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Abstract

Kernel Density Estimators are a well-known tool from statistics to estimate probability density

functions based on samples drawn from an unknown distribution. The estimate is provided

by centering local probability density functions - so called kernels - on the sample points and

averaging. The technique was successfully applied to the task of computing base table selec-

tivities for hyper-rectangular range queries over real-valued attributes in relational databases.

It was shown that estimate computations and error-driven hyper-parameter optimization can

be efficiently accelerated using a GPU.

In this thesis, we extend upon this approach by using the categorical kernel that centers a prob-

ability mass functions on discrete valued attributes. The resulting models provide an estimate

to the joint relative frequency distribution on those attributes and can be used to estimate the

probability of base table selectivities subject to conjunctive equality predicates. We show how

and under which assumptions independent KDE models for two different tables may be used

to efficiently compute the selectivity of joins subject to such selections. We provide an algorithm

to compute estimates and gradients required for hyper-parameter optimization. Furthermore,

we sketch how these computations can be implemented on a GPU.

We show how our approach can be generalized to multiple subsequent joins, highlight prop-

erties of the estimator and provide experimental evaluation using an artificial and a real-world

dataset.
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Zusammenfassung

Kerndichteschätzer sind ein bekanntes Werkzeug aus der Statistik zur nicht-parametrischen

Schätzung von Wahrscheinlichkeitsdichtefunktionen basierend auf einer Stichprobe aus einer

unbekannten Verteilung. Der Schätzer wird durch das Mitteln lokaler Wahrscheinlichkeits-

dichtefunktionen - sogenannten Kernen - erzeugt, die auf den Werten der Stichprobe zentriert

werden. Kerndichteschätzer wurden erfolgreich zur Schätzung der Selektivität von hyper-

rechteckigen Bereichsabfragen auf Basistabellen in relationalen Datenbanken angewandt. Es

wurde gezeigt, dass die Schätzungen und die fehlerbasierte Optimierung von Hyperparame-

tern sich durch Verwendung einer GPU beschleunigen lassen.

In der folgenden Thesis erweitern wir diesen Ansatz durch Verwendung eines Kernes für

kategoriale Variablen, bei dem es sich um eine Wahrscheinlichkeitsmassefunktion handelt, die

auf den Werten der Stichprobe zentriert wird. Das resultierende Modell erlaubt die Schätzung

der gemeinsamen Häufigkeitsverteilung der diskreten Attribute einer Tabelle. Sie erlauben

die Schätzung der Selektivität von konjunktiven Gleichheitsprädikaten auf Basistabellen. Wir

zeigen, wie und unter welchen Annahmen zwei unabhängige Modelle für unterschiedliche

Tabellen genutzt werden können, um die Selektivitäten von Joins zwischen diesen Tabellen

unter Berücksichtigung konjunktiver Gleichheitsprädikate effizient zu berechnen. Wir geben

Algorithmen für die Berechnung von Schätzungen und Gradienten an, die zur fehlerbasierten

Optimierung der Hyperparameter des Modells benötigt werden. Des Weiteren skizzieren wir

eine mögliche Implementierung dieser Berechnungen für GPUs.

Wir zeigen, wie Berechnungen für mehrere Joins angepasst werden können, untersuchen

Eigenschaften des Schätzers und führen eine Auswertung auf einem künstlich generierten und

einem existieren Datensatz durch.

iv



Contents

Abstract iii

Zusammenfassung iv

I Introduction & Problem Statement 1

1 Introduction 2

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II Background 7

2 Background 8

2.1 Selectivity Estimation in

Relational Database Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Kernel Density Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Kernel Density Estimators for Range Selectivity Estimation . . . . . . . . 19

v



III Approach 22

3 Approach 23

3.1 The Categorical Kernel for Discrete Attributes . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Using the Categorical Kernel for Selections with Equality Predicates . . . 26

3.2 Probabilistic View on Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Using the Categorical Kernel for Two-Way Joins . . . . . . . . . . . . . . . . . . . 28

3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Error-Driven Bandwidth Optimization . . . . . . . . . . . . . . . . . . . . 36

3.4.3 GPU-Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Sample Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Generalization for n-Way Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IV Evaluation & Conclusion 48

4 Evaluation 49

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Model Size & Estimation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Interference of Selections and Join Queries in Bandwidth Optimization . . 61

4.3 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 64

List of Tables 66

List of Figures 67

Listings 69

Bibliography 70

vi



Part I

INTRODUCTION & PROBLEM

STATEMENT



1 Introduction

Estimating the output cardinalities of operators is an important task in modern relational data-

base systems. They are used by the query optimizer to make assumptions about the cost of

possible execution plans for an incoming query [25] and therefore directly impact plan quality

[40]. However, providing these estimates has to adhere to a tight time budget as it delays query

execution.

Providing selectivity estimates for joins with selections on base tables is an important sub-

problem, as bad plan choices can significantly hurt query performance: Choosing an unfavor-

able join order or execution strategy can cause unnecessary large intermediate results or blocks

read from disk [14]. Furthermore, estimation errors have been shown to propagate exponen-

tially in the number of joins [25].

Contrary to the importance of the estimates, database products compute their estimates by

assuming independence and uniformity of attributes [30] - assumptions that are more often

violated than obeyed in real-world data and potentially cause large estimation errors. While

numerous authors have proposed estimators that do not require these assumptions and have

shown promising results, database systems shy away from using them due to the aforemen-

tioned performance considerations.

Independent uniform samples drawn from relations are one of the most intuitive approaches.

Sample-based estimators are easy to construct [36] and to maintain [16]. They can be used to

compute approximate aggregates and selectivity estimates for various operators [9] - including

joins and selections. However, they need to be chosen large enough to contain enough infor-

mation to provide accurate estimates. Choosing the sample large enough can be problematic in

a selectivity estimation setup, as usually a fixed memory and time budget is reserved for query

optimization.

For the case of hyper-rectangular range selections over continuous attributes, we have shown

in a prior publication [21] that Kernel Density Estimators are a practical approach to selectivity

estimation without the independence and uniformity assumptions. The estimator works with

a sample but uses it to construct a probability density by averaging local probability density
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functions - so called kernels - centered on the sample points. The bandwidth is a smoothing

parameter that controls the spread of the local probability densities. The estimate is then com-

puted by integrating over the query region. Using Kernel Density Estimators has the benefits of

samples when it comes to construction and adaption of the model while providing high quality

estimates [21]. We have described how to perform error-driven bandwidth optimization for the

model and have shown that a GPU can be utilized to evaluate larger models in the same time

budget.

In this thesis, we extend our previous approach by Kernel Density Estimator models for

discrete attributes. We do so by placing a probability mass function, the categorical kernel [31],

on sample points and averaging. For a single attribute, the kernel distributes probability mass

on the value of the sample point and evenly distributes the remaining probability mass across

all other possible values in the domain. The amount of probability mass placed on the sample

value is determined by the bandwidth. For multiple attributes, instances of the one dimensional

kernel are multiplied. The resulting estimator is a hybrid between sampling and assuming

uniformity . Like sampling, we are able to take dependencies between attributes into account,

and like with the uniformity assumption, there is a general estimate for all values that are not

or only partially included in the sample. The bandwidth parameter can be seen as the amount

of trust that is placed in either of the approaches. Error-driven optimization of this parameter

aims at balancing between the approaches to get the most out of both of them. The model

proposed in this thesis is complementary to our previous approach and can be used to create

models consisting of discrete and continuous attributes.

This thesis makes the following contributions:

1. We show how the categorical kernel can be used to compute the selectivity of base-table

selections with equality predicates and provide the gradient that is necessary to perform

error-driven bandwidth optimization.

2. We show how and under which assumption the categorical kernel can be used to effi-

ciently estimate the selectivity of two-way equi-joins and provide the gradient for error-

driven hyper-parameter optimization.

3. We provide an algorithm that allows the efficient computation of two-way join selectivity

estimates by only two passes over each sample - given that the sample is sorted on the

join attribute. We sketch how the algorithm can be implemented on a GPU and how it

can be extended to an arbitrary number of joins.

4. We evaluate our approach on a synthetic and a real-world dataset and compare it to other

estimators.

3



1.1. Problem Statement

1.1 Problem Statement
We attempt to solve the selectivity estimation problem for selections with conjunctive equality

predicates on base tables and joins subject to such selections.

Given a selection σe(R) with a predicate e on a relation R(A1, ...Ad1), the selectivity p (σe (R))
is computed by:

p (σe (R)) =
|σe (R) |
|R| (1.1)

We assume the selection predicate e to be the conjunction of equality predicates on the attributes

of R. We represent this predicate as a set of equality predicates (Ak = vk) with vk ∈ Ak.

σe (R) = σ∧
(Ak=vk)∈e R.Ak=vk (R) (1.2)

The task of a selectivity estimator p̂ (σe (R)) is to provide an estimate for the true selectivity

p (σe (R)) such that holds:

p̂ (σe (R))) ≈ p (σe (R)) (1.3)

Most of this thesis, we will consider queries q(R1, R2) consisting of a single equi-join between

two relations R1(A1, ...Ad1) and R2(A1, ...Ad2):

q (R1, R2) = σe1 (R1) onR1.Aj=R2.Ai σe2 (R2) (1.4)

The selection predicates e1 and e2 are conjunctive equality predicates on R1 and R2 respectively.

We denote the true selectivity of the query by p (q (R1, R2)):

p (q (R1, R2)) =
q (R1, R2)

|R1| · |R2|
(1.5)

Note that join selectivities without selections on base tables are just a subcase of these queries,

as p1 and p2 may be chosen empty which lets the selection predicate always evaluate to true

and disables the selection.

The task of a selectivity estimator is p̂ (q (R1, R2)) is to provide estimates for the true selec-

tivity that fulfills:

p̂ (q (R1, R2)) ≈ p (q (R1, R2)) (1.6)

We will also discuss the generalization of the problem to an arbitrary number of joins.
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1.2. Notation

Evaluating and comparing the estimation quality requires an error function that quantizes

the error between an estimated selectivity x and the true selectivity y. For this thesis, we choose

the quadratic error LQuadratic(x, y) = (x − y)2, mainly because the smoothing parameter of

our estimator is optimized for this error. As this thesis is the first evaluation of this estima-

tor, we choose to analyze its properties without the additional complexity of different error

functions for optimization and evaluation.

Besides the quality of an estimator, we have to take the overhead into account it causes the

database system to use it. There are several aspects that have to be considered.

Construction Cost: We have to consider the effort required to construct the model that the es-

timates are based on e.g. drawing a sample or computing frequency distributions. For

small relations it might be acceptable to perform multiple passes over the data, while

even one pass can be too much for very large relations. In case retrieving the data does

not clearly dominate model construction, the actual cost of the model construction algo-

rithm has to be taken into account as well.

Estimation Cost: We have to consider the cost of computing an estimate. As query optimiza-

tion delays query execution this should only take a small fraction of the overall query

processing time.

Memory Cost: The memory required to store the model should be reasonable and upper bounded.

Maintenance Cost: The cost required to adjust the model to changes in the database should be

acceptable.

We have extracted the following requirements for a good selectivity estimator: Besides a rea-

sonable estimation quality, the estimator should at most require one pass over the input data.

The upper memory bound should be a tunable parameter that allows balancing the estimation

quality for estimation cost. Maintaining the model should not require a full re-construction.

1.2 Notation
We give relational queries formally in terms of relational algebra, as it is the most concise way to

express them. Note, that we always consider relations as bags of tuples as it is done in relational

database systems [14]. Thus, base tables and intermediate results can contain duplicates.

We use the terms two-way join, three-way join and n-way join, to briefly refer to a join query

accessing two, three and n base tables, respectively.

When we refer to a relation R, we denote its cardinality as |R|. An attribute A in R is referred

to R.A whenever ambiguities exist. When an attributes A is used in our derivations, it denotes

the set of distinct values in the attribute. Thus, |A| denotes the number of distinct values in

attribute A.

5



1.3. Outline

R, R1, R2 Relations
S, S1, S2 Samples
R.Aj Attribute j in relation R (Set of distinct values)
S.Aj Attribute j in sample S (Set of distinct values)
q, qj Relational queries
~s Vector/Tuple s
sj j-th component of vector~s

Table 1.1: Notation

Table 1.1 gives a quick summary of our notation throughout the paper.

We use the term sample for brevity throughout the thesis, in particular in context of Kernel

Density Estimators for selectivity estimation. If not stated otherwise, we refer to simple random

samples without replacement that are drawn independently from each other.

1.3 Outline
In Part II, we provide background on this thesis. We discuss different approaches to join selec-

tivity estimation, formally introduce Kernel Density Estimators and explain how they can be

used for selectivity estimation of hyper-rectangular range-queries on real-valued attributes.

Part III introduces our approach to selectivity estimation for joins and selections on discrete

attributes. We introduce the categorical kernel for discrete attributes and show how estimates

and gradients are computed for selections and two-way joins. We provide algorithms per-

forming the computations, sketch a possible GPU-adaption and discuss extensions to multiple

joins.

In Part IV, we provide an experimental evaluation of our approach with respect to estimation

quality and execution time and, finally, summarize our findings to conclude this thesis.
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2 Background

In this Chapter we provide background on this thesis. In Section 2.1, we introduce the text-

book approach to selectivity estimation and highlight the assumptions that are the foundation

of selectivity estimation in modern relational database systems. Section 2.2 discusses related

techniques that are capable of providing selectivity estimates for joins. In Section 2.3, we finally

give an overview on Kernel Density Estimators. Furthermore, we explain our previous ap-

proach for selectivity estimation of hyper-rectangular range queries over real-valued attributes

using Kernel Density Estimators, which is the foundation for our approach to join selectivity

estimation introduced in the following Chapter.

2.1 Selectivity Estimation in

Relational Database Systems
In relational database systems, SQL queries are translated into logical query plans [14], which

describe the derivation of the query results in terms of operators from the relational algebra. As

logical operators can be implemented by different execution strategies, and may be executable

in different orders, logical query plans can be translated into a huge number of equivalent

physical execution plans. A cost-based optimizer is used to find a physical execution plan that

minimizes the estimated cost for executing the query [14]. For this purpose, the optimizer

needs accurate estimates on the cardinalities of intermediate results. These cardinalities are

estimated in a process called selectivity estimation, which uses data statistics to predict result

sizes for the operators in the plan. The term selectivity is used when the result size is as a share

of the maximum output cardinality of the operators. This is usually the case for selections,

where the selectivities are a share of the input cardinality, or joins, where selectivities are a

share of the cardinality of the cross product between input relations. As query optimization

delays query execution, selectivity estimation has to adhere to a tight time budget.

Database literature [14] and introduction lectures usually cover selectivity estimation based

on the number of distinct values of attributes. While the concept dates back to the early days

of query optimization in the 1970s [45], it is a vital part of modern relational database systems
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2.1. Selectivity Estimation in
Relational Database Systems

to a large extent.

The estimates are computed based on four major assumptions [14]:

Attribute Uniformity: The values in an attribute are uniformly distributed. Thus, every value

appears equally often.

Attribute Independence: The attributes in relations are pairwise statistically independent.

Containment of Value Sets: The join attributes in two relations have a subset relationship. The

assumption holds for a foreign-key relationship.

Preservation of Value Sets: The number of distinct values on a non-join attribute remains the

same after the join.

Given a selection with an equality predicate on an attribute A in relation R, the relation

cardinality |R|, and the number of distinct values in attribute A denoted as |R.A|, the selectivity

p̂ (σA=c (R)) under the attribute uniformity is calculated by:

p̂ (σA=c (R)) =
1
|R.A| (2.1)

If the selection predicate is a set e of conjunctive equality predicates (Ai = vi) with vi ∈ Ai,

the estimate under the attribute independence assumption is given by multiplying the per-

attribute estimates:

p̂ (σe (R)) = ∏
(Ai=vi)∈e

p̂ (σAi=vi (R)) (2.2)

The selectivity of a two-way equi-join on two tables R1 and R2 on a common attribute A1

given attribute uniformity assumption and containment of value sets is calculated as:

p̂ (R1 onR1.A1=R2.A1 R2) =
1

max(|R1.A1|, |R2.A1|)
(2.3)

Without loss of generality assume |R1.A1| ≤ |R2.A1|. The containment of value sets assumption

implies that every value in R1.A1 remains in the join result. The probability for a match with a

tuple from R2.A1 is then given by the attribute uniformity assumption. Thus, for every tuple

from the cross product of R1 and R2 the join keys coincide with probability 1
|R2.A1| .

Since the number of distinct values in the former join attribute of the join result is |R1.A1| by

containment of value sets, and preservation of value sets yields that non-join attribute frequen-

cies are not changed, the selectivities for n-way joins can be calculated by repeated application

of the two-way join formula in Equation 2.3. Using the attribute independence assumption

allows to compute the estimate subject to selections by multiplication.

While the assumptions allow the efficient computation of estimates, they are often violated
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2.2. Related Work

in real-world data sets and therefore introduce large errors. These errors have been shown to

increase exponentially in the number of joins [25]. Database products dropped the attribute

uniformity assumption by collecting more sophisticated per-attribute statistics like histograms

and the frequencies of most common values, while maintaining the attribute independence

assumption and value set assumptions. This improves the quality on selections on a single-

attribute, but the remaining assumptions may still introduce large errors whenever multiple

attributes are involved in selections or in joins. In a recent publication, Leis et al. have con-

firmed that this is a significant problem [30]: In all five evaluated relational database systems

errors propagate exponentially in the number of joins and the errors are shown to cause sub-

optimal query plans.

Getting rid of the independence assumption means modeling the joint distribution of at-

tributes. While numerous authors have proposed such models, they did not have product im-

pact. We claim that this is the case because the models do either not provide reliable estimates

or are too expensive to evaluate, construct, or adapt to changes in the modeled relations. In the

following Section, we will introduce several models that are capable of providing estimates for

joins and joins subject to selections.

2.2 Related Work
Since the introduction of the first cost-based query optimizer in 1979 [45] numerous authors

have proposed selectivity estimators using various models with different theoretical back-

ground. Therefore, giving a complete overview over the landscape of selectivity estimators

is infeasible. We concentrate on introducing the most prominent concepts for estimating the

selectivity of equi-joins that can be used to overcome the attribute independence and attribute

uniformity assumptions.

2.2.1 Sampling

Sampling-based estimators compute their estimates based on a subset of tuples from the input

relations. The estimators follow a common scheme: The samples are retrieved, the join is eval-

uated on the samples and the estimated result is normalized to provide a valid selectivity. The

construction of the sample usually involves randomness in form of random number generators

or seeds for hash functions. Note that while most of the mentioned sampling estimators were

introduced for two-way joins, an extension to more joins or additional selections is usually

evident.

Sampling-based estimators can be distinguished by the way the sample is retrieved. The

first family of algorithms creates samples by drawing portions from relations with uniform

10



2.2. Related Work

probability. This is either done on a tuple or block level. An overview of algorithms of this

family is given in [18]. We will refer to the most intuitive way as simple sampling: Given two

relations R1 and R2, we draw two samples S1 and S2 of desired size |S1| and |S2| uniformly and

independently without replacement from the respective relations. Given a query q (R1, R2) =

σe1 (R1) onj σe2 (R2) with selection predicates e1 and e2 as well as the equi-join predicate j the

estimate p̂ (q (R1, R2)) can be computed by the following formula:

p̂ (q (R1, R2)) =
1

|S1| · |S2|
|q (S1, S2) | (2.4)

Samples can be likewise used for multiple joins by executing it on the samples and normalizing

with the cardinality of the cross product. It can be shown that this estimator is unbiased, which

means that the expected value of the estimator is equal to the estimated quantity:

E [ p̂ (q (R1, R2))] = p (q (R1, R2)) (2.5)

Note that, even though the estimator is unbiased, the join result of two simple samples does

not yield a uniform sample of the actual join result. Using independent simple samples is very

convenient: They may also be used to compute other selectivity estimates and approximate

aggregates [9]. In particular, they may also be used to produce selectivity estimates for per-

table selections by applying the query to the sample and normalizing with the sample size.

Their construction can be realized with O(|S|) disk accesses [36], but at worst a sequential scan

over the input relation suffices if Reservoir Sampling [52] is used. Maintaining a random sample

for a relation that is subject to insertions, deletions and updates is a well-researched topic [16].

However, using simple sample for joins suffers from a drawback: When the number of join

keys is very large compared to the sample size and there is no significant skew in the data,

the probability that a join key is included in both samples is very low, which will cause the

estimator to return a selectivity of zero most of the time. This is a common case in databases, as

joins often involve attributes being unique keys due to database normalization. The problem

deteriorates with the number of joins [9].

Adaptive Sampling Algorithms (e.g. [18, 32, 33]) use more complex sampling schemes that

increase the sample size dynamically to give limits on the estimation error with a specified

confidence. However, the use of adaptive sampling for selectivity estimation in a database

system is of limited use: As usually a fixed time budget is reserved for selectivity estimation,

the algorithm would have to abort after the sample size has reached a predefined limit and the

algorithm has not reached its convergence criteria.

The second family of estimators tries to reduce the shortcomings of independent sampling

by taking into account the actual contents of samples or relations during the sampling step.

11



2.2. Related Work

The Bifocal Sampling Algorithm [13] tries to improve estimates by using different sampling

techniques to account for sparse and dense join keys. The estimator can guarantee an error

of two with high probability if the sample sizes and a threshold are selected accordingly, but

requires indexes on join attributes.

The End-Biased Sampling Algorithm [11] does perform the sampling decisions in the join re-

lations dependently. The algorithm uses a hash function mapping the join keys uniformly to

[0, 1] and a threshold parameter Ki for each of the relations R1 and R2. Furthermore, it requires

the frequency distribution of join keys in the relations Ri denoted as Fi(v). Every join key that

occurs more often in Ri than Ki is automatically included in the respective sample Si. All other

join keys v are included if their hash value is less or equal than h(v) ≤ Fi(v)
Ki

. As the same hash

function is used for both relations, all join keys v with h(v) ≤ min
(

F1(v)
K1

, F2(v)
K2

)
are included

in both samples. The estimate p̂ (q (R1, R2)) for the query q is then computed as the sum of

contributions cv for every value v present in both samples

p̂ (q (R1, R2)) =
1

|R1| · |R2|∑v
cv (2.6)

where cv is given by [51]:

cv =



Fc
1(v) · Fc

2(v) if F1(v) ≥ K1 ∧ F2(v) ≥ K2

K1 · Fc
2(v) if F1(v) < K1 ∧ F2(v) ≥ K2

Fc
1(v) · K2 if F1(v) ≥ K1 ∧ F2(v) < K2

Fc
1(v) · Fc

2(v) ·max
(

K1
F1(v)

, K2
F2(v)

)
if F1(v) < K1 ∧ F2(v) < K2

(2.7)

The quantity Fc
i (v) denotes the number of tuples in Ri with join key v that have also fulfilled

the predicates of the selection. It can be shown that this is an unbiased estimator. Selecting

the sampled join keys by a common hash function does address the problem of independent

samples and provides a better variance of the estimate [51]. The sampling algorithm needs two

passes over both relations - one for the frequency distribution and one to obtain the sample.

Furthermore, the thresholds K1 and K2 are parameters that need to be hand-tuned as the re-

sulting sample size is very dependent on the dataset. Note that End-Biased samples need to be

constructed for every attribute that participates in a join.

The Correlated Sampling Algorithm [51] basically removes the guarantee that the most-common

values in the relation are included in the sample but also the need to perform two passes over

the relations. It requires a hash function h that maps the join keys uniformly to [0, 1] as well

as two target sample sizes n1 and n2. The target sample sizes are then used to compute the

threshold Ti =
ni
|Ri | . A join key v from Ri is included if it holds h(v) ≤ Ti. The estimate for the
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query q is given by:

p̂ (q (R1, R2)) =
1

|R1| · |R2| ·min(T1, T2)
|q (S1, S2) | (2.8)

The estimator can be shown to be unbiased. There exists a generalization for arbitrary many

joins [51]. While the parameters n1 and n2 are referred to as target sample sizes, they only

control the expected share of join keys included from the respective samples. If there is skew

on the join attributes, the obtained sample sizes may vary significantly.

The term Correlated Sampling is also used in the CS2 algorithm [53] for selectivity estimation

of multiple joins with arbitrary join predicates. This algorithm starts at a node in the join graph

and draws a simple sample. The samples for subsequent nodes in the join graph are obtained

by executing the join with the simple sample and collecting the participating tuples. However,

implementing the algorithm either requires an unpredictable amount of space for the samples

or requires multiple passes over the data - both infeasible for selectivity estimation in database

systems.

2.2.2 Sketches

Sketches are a technique from the field of stream processing. They are randomized algorithms

that allow approximate answers to aggregate queries where storing the entire data stream is

impossible [43]. This is done by using random seeds and the data to create random variables

with distributions connected to the value of the true aggregate. Measuring characteristics of

the distributions allows to derive the estimate.

The most prominent sketch for join selectivities is the AGMS Sketch, initially called the Tug-
Of-War Sketch [1, 2]. Given a data stream that consists of values in V = {v1, ..., vn}, the sketch

requires 2-wise independent random variables ξi for every vi ∈ V that have the value +1 or−1

with equal probability. The random variables can be obtained from a 2-wise independent hash

function that is initialized with a random seed. Given a stream of values A = [v1, v3, v2, v3, ...],

the sketch sk(A) for the data stream is given by summing up the random variables for the

observed values:

sk(A) = ξ1 + ξ3 + ξ2 + ξ3 + ... (2.9)

If we want to compute the estimate for a join with a second data stream B, we multiply with its

sketch sk(B) constructed using the same random variables.

p̂ (A on B) =
sk (A) · sk (B)
|A| · |B| (2.10)

13
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It can be shown that this is an unbiased estimate for the selectivity of A on B. The intuition be-

hind this estimator is, that multiplying the sketches is equivalent to multiplying every random

variable in sketch A with every random variable in sketch B and summing them up. This is one

summand for every tuple in the cross product of the two input relations. By 2-wise indepen-

dence, the expected value of these summands is E
[
ξi · ξ j

]
= 1 if i = j, otherwise E

[
ξi · ξ j

]
= 0

. Thus, in expectation we have a contribution of one for every tuple in the cross product with

coinciding join values, which finally adds up to the result cardinality of the join.

The variance of the estimator reduces by a factor 1
k when the results of k sketches constructed

with different random variables is averaged. Hence, usually a vector of AGMS Sketches is

maintained for every stream. Note that maintaining large vectors can be computationally ex-

pensive, as every entry has to be updated for an incoming value on the stream. The variance

can be further reduced by using a 4-wise independent hash function, which is more demanding

in terms of the size of the random seed and computation cost [42].

The AGMS Sketch is easily extended to multiple joins by introducing further families of

random variables for the additional join [10]. Every sketch is updated by adding the product

of the random variables for all joins accessing this table. Consider the case of two streams

A = [v1, v3, v2, v2, v1, ...] and C = [u1, u2, u1, u3, u2, ...] and an intermediate stream B = [(v2, u1) ,

(v3, u4) , (v1, u2) , ...] as well as two families of random variables ξ1
v and ξ2

u. The sketches sk(A)

and sk(C) are computed like before with ξ1
v and ξ2

u respectively. The sketch B is computed as

follows:

sk(B) = ξ1
v2
· ξ2

u1
+ ξ1

v3
· ξ2

u4
+ ξ1

v1
· ξ2

u2
(2.11)

The selectivity p̂ (A on B on C) is then given by:

p̂ (A on B on C) =
sk (A) · sk (B) · sk (C)
|A| · |B| · |C| (2.12)

AGMS Sketches can even process deletions in the stream by simply decrementing the sketch

by the former contribution of the deleted value.

Vengerov et. al. [51] have proposed an extension to the AGMS Sketch that allows estimating

the join selectivity subject to arbitrary selection predicates using the same sketch. The authors

make use of the fact that every selection on an attribute can be realized as an equi-join on this

attribute with an artificial relation that contains all values satisfying the selection. Depending

on the predicate of the selection, the generation of the artificial relations and the corresponding

sketch can be expensive. However, in the case of equality predicates, we need to compute the

hash function only once to construct the sketch for the artificial table, and in case of selections

over a contiguous range summable hash functions can be used [42].
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Further variants of the AGMS Sketch exist. Fast-AGMS Sketches [9] reduce the update time

for AGMS Sketches by removing the need to update the entire AGMS sketch vector for ev-

ery item in the stream. The authors propose maintaining multiple vectors of AGMS Sketches,

each coming with its own family of random variables and a 2-wise independent hash func-

tion, mapping the join values to one of the positions in the vector. For every update, only

one position in each of the vectors is updated. The estimate for two Fast-AGMS Sketches is

computed by element-wise multiplying the vectors from both tables that use the same pair of

random variables and hash function and summing them up. The final estimate is then given

by the median of the per-vector estimates. Fast-AGMS Sketches only improve the update time

of AGMS Sketches, the variance of the estimate is identical [43]. Skimmed Sketches [12] apply

the idea of Bifocal Sampling (Section 2.2.1) to AGMS Sketches by treating dense and sparse

join keys differently to improve the variance of the estimate. However, it remains to be shown

that Fast-AGMS Sketches or Skimmed Sketches can be efficiently extended to n-way joins or

selections.

Besides the AGMS-based estimators, the counting-based sketches Fast-Count Sketches [48] or

Count-Min Sketches [8] may be used to compute estimates for two-way joins [43]. However, to

the best of our knowledge no generalization exists that allows the computation of n-way joins

or including selections.

Sketch-based estimation techniques may also be used for selectivity estimation in database

systems by considering input relations as a stream. However, e.g. compared to simple samples

(Section 2.2.1), constructing sketches requires us to know join attributes and selection attributes

beforehand. Note that the AGMS approach does not only require memory for the sketch coun-

ters but also requires storing the seeds for the 4-wise independent hash functions, which are

logarithmic in the number of distinct elements in the stream [42].

2.2.3 Graphical Models

Probabilistic graphical models are a popular technique that allows to express joint probability

distributions in terms of graphs [3]. Bayesian Networks represent random variables as nodes

and encode direct dependence between variables with a directed edge [3]. This way, every

node is conditionally independent of its non-descendants given its parents. As any conditional

or unconditional probability can be inferred from conditional probability tables for the nodes

given their parents, constructing a Bayes Network can potentially reduce the amount of mem-

ory necessary to store the joint probability distribution.

Getoor et al. [15] have proposed computing the selectivity of joins subject to selections with

equality predicates using Bayes Networks. Applying the idea of Bayesian Networks to selec-
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tions on a single table is trivial, as every attribute can be seen as a random variable. Bayesian

Networks for joins require using a trick: The Bayesian Network models the cross product of

tables and an additional binary random variable - a join indicator - is introduced. These join

indicators determine if a tuple from the cross product is included in a join. The algorithm is

separated in an offline and an online phase. In the offline phase, the structure of the Bayesian

Network is determined and the conditional probability tables are computed; in the online phase

estimates are provided. While the approach shows promising estimation results, the construc-

tion of the model is fairly expensive: Finding the structure for a Bayesian Network is done by

heuristic search through the space of possible Bayesian Networks by optimizing a score that

requires executing grouped counts on base tables and join results. Sampling can be used to

accelerate model construction, however, this comes with a loss of accuracy [15].

Tzoumas et. al. [50] built upon their idea but aimed for improved efficiency. Among their

optimizations are restricting probability tables to two dimensions and using a model selection

strategy inspired by CORDS algorithm [22] for detecting correlations and functional depen-

dencies. Their approach does only require computing grouped counts for two-way joins and

base-tables.

While probabilistic graphical models are a powerful technique for selectivity estimation in

databases, their creation requires several passes over the input data, performing joins and com-

puting grouped aggregates, which makes them more expensive to construct than the intro-

duced sampling or sketch-based approaches. To the best of our knowledge there is no work on

adapting probabilistic graphical models for selectivity estimation to changing data.

2.2.4 Wavelets

Wavelet transformations are a mathematical tool for hierarchically decomposing functions.

They allow to describe functions by a coarse approximation function and detail coefficients in-

fluencing the functions at various scales [46]. Removing the coefficients with the lowest impact

allows approximation with error guarantees. Chakrabarti et. al. [7] proposed using wavelets

for approximate query processing - a problem that is related to selectivity estimation as it aims

at providing better performance by delivering only approximate answers. Wavelet decomposi-

tion is applied to the joint frequency distribution of input relations, while the obtained wavelet
coefficients are restricted to the most influential ones. The remaining coefficients form a wavelet
synopsis that provides an approximation to the joint frequency distribution. This can be seen

as applying lossy compression to the frequency distribution. The authors have shown that

complex relational queries consisting of selections, projections, joins and aggregate queries can

be computed without leaving the wavelet coefficient domain, which allows fast approximate

answers to those queries. This way, the approximate result size of joins subject to filters can
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be obtained and used as a selectivity estimate. While wavelets have shown superior results

compared to sampling, their construction is more expensive as it requires multiple passes over

the data.

2.3 Kernel Density Estimators
Kernel Density Estimators are a well known tool from statistics for non-parametric estimation

of probability density functions [44] using a random sample. Figure 2.1 visualizes how the

estimate for a given two-dimensional distribution (Figure 2.1(a)) is obtained. Given a sample

from the distribution (Figure 2.1(b)), local probability density functions - so called kernels - are

centered on these sample points (Figure 2.1(c)). This can be seen as placing probability mass

in the neighborhood of the sample points. The estimate is then given by averaging over the

contributions of the local probability density functions (Figure 2.1(d)).

(a) Points in data set (b) Sampled points (c) Kernels (d) Estimated distri-
bution

Figure 2.1: A Kernel Density Estimator approximates the underlying distribution of a given dataset (a)
by picking a random sample (b), centering local probability distributions (kernels) around
them (c), and averaging the local distributions (d). [21]

Formally, given a random sample S = {~s1, ...,~sn} ⊂ R drawn from d-variate vectors of con-

tinuous random variables with a probability density function p : Rd → R, the kernel density

estimate p̂H(~x) : Rd → R is given by:

p̂H(~x) =
1
s

s

∑
i=1

KH(~t (i) −~x)

=
1

s · |H|
s

∑
i=1

K(H−1[~t (i) −~x])
(2.13)

In this equation, K : Rd → R denotes the kernel function, which defines the shape of the local

probability density functions. Any non-negative, symmetric, and real-valued function inte-

grating to one is eligible as a kernel function. Note that, while the kernels follow a certain

distribution, the resulting estimator does not assume any input distribution. In fact, the impact

of the choice of the kernel function is negligible [44] and it can be selected based on desirable

properties, e.g. continuous differentiability. Among popular choices are the Gaussian kernel,
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(a) Bandwidth too small. (b) Bandwidth too large.

Figure 2.2: Choosing the bandwidth has a crucial impact on estimation quality. If the bandwidth is too
small (a), the estimator over-fits the sample. If it is too large (b), all local information is lost.
[21]

which is a multivariate Gaussian distribution, and Epanechnikov kernel, which is a truncated

second order polynomial. The parameter H ∈ Rd×d is the bandwidth matrix, which is a smooth-

ing parameter that controls the spread of the probability function. The matrix needs to be

non-singular and symmetric. The bandwidth parameter has a major influence on the quality

of the estimate. Figure 2.2 visualizes the effect of wrong choices for the bandwidth parame-

ter: If the bandwidth parameter is selected too small (Figure 2.2(a)), the estimated distribution

over-fits the sample; If the sample bandwidth parameter is chosen too large (Figure 2.2(b)), the

estimator under-fits the sample and the local information of the sample points is lost. It is a

common simplification to restrict H to diagonal matrices with Hi,i = hi > 0.

Finding a suitable value for the bandwidth matrix is a non-trivial task that is performed by

a bandwidth selector. The problem has been under heavy investigation by the statistics commu-

nity [27, 44]. Most methods aim at minimizing the mean integrated squared error (MISE) which

is E
[∫

~x (p (~x) p̂H (~x))2 d~x
]
. The problem is particularly challenging, as the true output cardi-

nality p(~x) is usually unknown. Therefore, bandwidth selectors optimize H over an approx-

imation of the true density. Scotts rule [44] assumes the true distribution to be a multivariate

normal distributionN (µ, Σ) and delivers a closed-form formula for an optimal diagonal band-

width matrix H that depends on the per-dimension standard deviation and dimensionality of

the sample.

ĥscott
i = s−

1
d+4 · σi (2.14)

While easy to calculate, this formula potentially introduces large estimation errors if the

assumption is violated. More sophisticated classes of bandwidth selectors obtain there approx-

imation through Cross Validation on the sample or Plug-In methods iteratively refining a pilot

distribution. These approximations deliver significantly better results for general distributions,

but are more computationally expensive [27, 17].
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2.3.1 Kernel Density Estimators for Range Selectivity Estimation

Multiple authors have proposed Kernel Density Estimators for selectivity estimation of multi-

dimensional range queries over real-valued attributes [4, 17]. The key idea is to draw the

sample from the relation R and integrate the Kernel Density Estimator over the query range.

Based on a KDE constructed from a uniform sample S from R, we can calculate the estimated

selectivity of a (hyper-rectangular) query region Ω by integrating p̂H(~x):

p̂H(Ω) =
1
s

s

∑
i=1

∫
Ω

K
(

H−1
[
~t (i) −~x

])
|H| d~x︸ ︷︷ ︸

= p̂ (i)
H (Ω)

(2.15)

Using a Kernel Density Estimator for selectivity estimation has several benefits:

• Kernel Density Estimators do not require the independence assumption.

• Kernel Density Estimators have been shown to converge faster to the underlying dis-

tribution than histograms do [44] and to provide better results [17] compared to plain

sampling-based estimators [29, 34].

• Kernel Density Estimators models are easily constructed as they only require a simple

sample. Compared to state of the art multi-dimensional histograms ([5, 17]), they do not

require special data structures for their representation nor the additional computations

for their construction.

• Kernel Density Estimators are adaptive with respect to changes to the input relation, as

maintaining a sample of a relation that is subject to insertions, deletions and updates is a

well-researched topic [16].

In a previous publication [21], we have shown that the bandwidth selection problem can

be solved more efficiently in a selectivity estimation setup. As a database system usually exe-

cutes a query after the optimizer requested selectivity estimates, the true output cardinality of

operators in the execution plan are available. This information can be used to select a band-

width that optimizes the quality for previously observed queries instead of optimizing the

MISE. Formally, given a loss function L : R × R → R and a set of representative queries

Q =
{

Ω1, . . . , Ωq
}

, the bandwidth selector for a diagonal bandwidth matrix solves the follow-

ing optimization problem:

H∗ = argmin
H

1
q

q

∑
i=1
L
(

p̂H (Ωi) ,

∣∣σ~x∈Ωi (R)
∣∣

|R|

)
(2.16)

s.t. ∀i : hi > 0
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The loss function can be any loss function like the quadratic, absolute or relative error. If the

objective function is continuously differentiable with respect to the bandwidth components hi,

the optimization problem can be solved by a gradient-based bound-constrained optimization

algorithm. To do so, we need to derive the gradient ∇HL =
[

∂L
∂h1

, . . . , ∂L
∂hd

]T
. Using the chain-

rule yields the following equation for the partial derivatives:

∂L
∂hi

=
∂L

∂ p̂H (Ω)
· ∂ p̂H (Ω)

∂hi
(2.17)

We therefore need to select the kernel function continuously-differentiable with respect to the

bandwidth on the optimization region as well as the loss function continuously differentiable

with respect to the estimate p̂H(Ω). The Gaussian Kernel, which is a multivariate normal dis-

tribution with zero mean, and the quadratic error LQuadratic =

(
p̂H (Ωi)−

|σ~x∈Ωi
(R)|

|R|

)2

are

valid choices we have evaluated in our previous publication. We suggested two optimization

strategies:

Batch: Collect a fixed-size sample from the relation R, set the initial bandwidth using Scotts

rule, collect a set of queries in a ring buffer and optimize the bandwidth using an offline

optimization algorithm. Increasing the number of queries leads to a more robust opti-

mization, while decreasing reduces the number of computations necessary to calculate

estimates and partial derivatives.

Adaptive: Collect a fixed-size sample from the relation R, set the initial bandwidth using Scotts

rule and use an online optimization algorithm to apply changes to the bandwidth in mini-

batches of few queries.

Furthermore, we suggested to accelerate estimation and bandwidth optimization by using

a GPU. This allows us to evaluate much larger samples in the same time budget compared to

a CPU implementation. To do so, the sample and initial bandwidth are transferred to GPU

device memory once at creation of the estimator.

If an estimate is requested, the query bounds are transferred to the device memory. The local

contribution p̂ (i)
H (Ω) for every sample point in Equation 2.15 can be computed independently

by different threads and stored in a buffer. Applying a parallel binary reduction scheme allows

to efficiently aggregate the individual contributions to the final estimate. The estimate is then

transferred back to the host for usage in query optimization.

After query execution finished, the observed actual selectivity is transferred to the device

memory. The computation of the partial derivatives follows a structure similar to the estima-

tion computations. Further steps depend on the optimization strategy. If the batch strategy is

used and sufficient queries were collected, we use an off-the-shelf implementation of LBFGS-B
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[6] to perform the numerical optimization. Until converged, the optimization algorithm pro-

poses a bandwidth in every iteration that is transferred to the device. The GPU computes

objective and gradient, which are afterwards transferred back to the host memory.

If the adaptive optimization strategy is used and a mini-batch of queries was collected, we

use a GPU-implementation of the RMSprop [49] algorithm to adjust the bandwidth. Compared

to the batch strategy, this has several benefits: The computation of the partial derivative of the

kernel with respect to the bandwidth does not depend on the actual selectivity. Thus, we can

perform its computation while the query is still running and only need to perform a scalar

multiplication with the derivative of the loss function afterwards. Bandwidth and gradient do

not have to be transferred to the host as the optimization algorithm operates entirely on the

GPU. However, these benefits come with a less robust optimization.

Additionally, we introduced a GPU-friendly error-driven sample maintenance algorithm [21,

20] that assesses the usefulness of sample points by computing the leave-one-out estimate for

each of them. These estimates are translated to a score that assesses the contribution of every

sample point. Sample points that constantly improve the estimates by their absence are likely

misrepresenting the distribution in the relation and are replaced by randomly drawn tuples.

Using this approach, we can maintain a reasonable sample quality without having to mirror

changes to the relation set to the sample on the GPU.

We made the following findings:

• Kernel Density Estimators with error-driven bandwidth selection outperform naive band-

width selection using Scotts rule with respect to estimation quality

• Kernel Density Estimators with error-driven bandwidth selection and sample mainte-

nance outperform state-of-the-art multidimensional histograms with respect to estima-

tion quality for static and changing relations

• Error-driven bandwidth selection provides estimates comparable to state-of-the-art cross-

validation techniques.

• The batch strategy provides more robust estimates compared to the adaptive approach.

• GPU-accelerated Kernel Density Estimators scale up to very large sample sizes without a

significant performance impact.

These positive results motivate us to investigate, if we can apply Kernel Density Estimators

to even more database operations. In this thesis, we will investigate Kernel Density Estimators

for discrete data types. In particular, we estimate the selectivities for selections with conjunctive

equality predicates and equi-joins subject to such selections.

21



Part III

APPROACH



3 Approach

In this Chapter, we introduce our approach to join selectivity estimation using Kernel Density

Estimators. Our basic idea is to model the joint frequency distribution in base tables using

Kernel Density Estimators and then exploiting these models to estimate the selectivity of joins.

As the joint frequency distribution is discrete and our previous approach constructs a contin-

uous probability density function, we introduce the categorical kernel in Section 3.1 that provides

a discrete probability mass function instead. We show how these models can be used to provide

selectivity estimates for selections consisting of conjunctive equality predicates and provide the

gradient required for error-driven bandwidth optimization.

In Section 3.2, we explain how the selectivity of joins can be computed using joint frequency

distributions. In Section 3.3, we show how and under which assumptions the estimated joint

frequency distribution provided by continuous Kernel Density Estimators can be used to es-

timate the selectivity of two-way joins efficiently. Furthermore, we provide the gradient to

perform error-driven bandwidth optimization. We give a sequential algorithm for the compu-

tation of join selectivity estimate and their error-gradient in Section 3.4. Moreover, we sketch a

possible parallel implementation on a GPU.

Section 3.5 presents possibilities to efficiently extend the estimator to n-way joins. Finally, in

Section 3.6, we discuss the relationship of our estimator to simple samples and the indepen-

dence and uniformity assumption.

3.1 The Categorical Kernel for Discrete Attributes
The kernels we used in our previous work deliver estimates for a continuous probability den-

sity [21] . This makes them suitable for estimating range-queries over continuous attributes.

However, they are not directly applicable to discrete attributes such as integer keys. Li and

Racine [31] proposed a kernel for distributions over categorical random variables. Given a fi-

nite attribute domain C and the bandwidth parameter λ ∈ [0, 1), the categorical kernel kλ :
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C× C → [0, 1] is defined as:

kλ (x1, x2) =

(1− λ) x1 = x2

λ
|C|−1 x1 6= x2

(3.1)

The kernel contributes (1− λ) if sample point and function value coincide, the remaining

probability mass is evenly distributed across all remaining values in C. Figure 3.1 shows the

categorical kernel on the value 2 with λ = 0.7 and C = {0, 1, 2, 3, 4}.

The kernel is a product kernel, which means that for a joint probability density over multiple

attributes C = C1 × ...× Cd the contribution of a sample point~s ∈ C for a vector of smoothing

parameters~λ is given by the product of the single-dimensional kernels.
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kλ(2,x)

Figure 3.1: The categorical kernel on value 2 with λ = 0.7 and C = {0, 1, 2, 3, 4}

K~λ (~s,~x) =
d

∏
i=1

kλi (si, xi) (3.2)

Like in the continuous case, the value of the bandwidth parameter λ is essential for the quality

of the estimate. If the smoothing parameter approaches zero for a dimension, the estimated

probability along this dimension approaches the relative frequency distribution in the sample.

A smoothing parameter approaching one removes probability mass from the sample points

and places more probability mass on values not included in the sample. Figure 3.2 shows a

one-dimensional example of a discrete Kernel Density Estimator fitting the sample S = {2, 2, 3}
drawn from a binomial distribution with n = 4 and p = 0.5: (a) Shows the target distribution;

The remaining pictures show the estimated probability density and visualize the contribution

of every sample point for fitting (b), over-fitting (c), and under-fitting value of λ (d).

The estimated distribution may even be a mix of discrete C = C1 × ...× Cd and continuous
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(a) Binomial distribution
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(b) Fitted estimate (λ = 0.4)
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(c) Under-fitted estimate (λ ≈ 1.0)
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(d) Over-fitted estimate (λ ≈ 0.0)

Figure 3.2: Effect of the bandwidth parameter λ on a Kernel Density Estimator obtained by sampling
from a binomial distribution with n = 4 and p = 0.5.

attributes Ω ⊆ Rr. Given a sample S =
{(

~s(1),~t(1)
)

, ...,
(
~s(n),~t(n)

)}
⊆ C×Ω and an arbitrary

continuous kernel KH : Rr → R with a bandwidth matrix H, the estimate p̂ : C ×Ω → R is

computed by multiplying the discrete and continuous contributions of every sample point.

p̂ (~c, ~ω) =
1
n

n

∑
i=1

K~λ

(
~s(i),~c

)
· KH

(
~t(i), ~ω

)
(3.3)

The kernel kλ and the obtained estimate is continuously differentiable with respect to λ,

which is required to perform error-driven optimization of bandwidth parameter. The gradient

of the kernel kλ is given by:

∂k (x1, x2)

∂λl
=

−1 x1 = x2

1
|C|−1 x1 6= x2

(3.4)

The gradient of the estimate p̂ (~c, ~ω) with respect to a component λl of the discrete bandwidth
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vector~λ is given by:

∂ p̂ (~c, ~ω)

∂λl
=

∂

∂λl

1
n

n

∑
i=1

K~λ

(
~s(i),~c

)
· KH

(
~t(i), ~ω

)
=

1
n

n

∑
i=1

(
∂

∂λl
K~λ

(
~s(i),~c

))
· KH

(
~t(i), ~ω

)
=

1
n

n

∑
i=1

(
∂

∂λl
kλl

(
s(i)l , xl

))
·
(

∏
j 6=l

kλj

(
s(i)j , xj

))
· KH

(
~t(i), ~ω

)
(3.5)

Note that the continuous kernel only participates as a factor to the gradient of the discrete

bandwidth. The discrete contributions participate as a factor in the gradient with respect to the

bandwidth matrix H.

∂ p̂ (~c, ~ω)

∂H
=

∂

∂H
1
n

n

∑
i=1

K~λ

(
~s(i),~c

)
· KH

(
~t(i), ~ω

)
=

1
n

n

∑
i=1

K~λ

(
~s(i),~c

)
·
(

∂

∂H
KH

(
~t(i), ~ω

)) (3.6)

In the following, we will not cover mixtures of discrete and continuous models further and

focus on discrete models. Note that this is merely due to notational simplicity and space con-

straints - the findings of the following Sections are easily extended to mixed Kernel Density

Estimators that allow additional continuous range queries on attributes.

3.1.1 Using the Categorical Kernel for Selections with Equality Predicates

Using the categorical kernel for selections with equality predicates on the attributes of a rela-

tional table is straightforward as a discrete probability distribution function already models the

probability of a vector from the domain. Given a relation R = (A1, ..., Ad) with attributes that

are considered discrete, a sample S =
{
~s(1), ...,~s(n)

}
⊆ R and a bandwidth vector ~λ ∈ [0, 1)d,

the probability for selection σ of conjunctive equality predicates is computed by multiplying

the contributions for attributes participating in the selection.

p̂~λ (σ) =
1
n

n

∑
i=1

∏
(Aj=xj)∈σ

kλj

(
s(i)j , xj

)
(3.7)

Note that evaluating the categorical kernel requires the number of distinct values in the at-

tribute, which is a common statistic in query optimizers. The kernel is only defined on its

domain, hence, a selectivity of zero should be returned whenever an equality predicate tar-

gets a value that is not part of the attribute domain. However, making this decision in general
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requires scanning the relation or an index, which is unfeasible for selectivity estimation. There-

fore, we have to assume that all incoming values are a part of the domain. In case additional

statistics are maintained, i.e. minimum and maximum values or a bloom filter, these can be

used to reduce the error introduced by this assumption.

The gradient for a given selection with respect to λl only has a non-zero value when Al

participates in the selection.

∂ p̂~λ (σ)
∂λl

=


1
n ∑n

i=1

(
∂

∂λl
kλl

(
s(i)l , xl

))
∏(Aj=xj)∈σ∧l 6=j kλj

(
s(i)j , xj

)
(Al = xl) ∈ σ

0 (Al = xl) /∈ σ
(3.8)

3.2 Probabilistic View on Joins
The output cardinality of equi-joins and selections can be computed based on the frequency

distributions in the base tables. We denote the join selectivity for a given join query q by p (q),
which is the output cardinality relative to the Cartesian product. Further, we refer to the relative

frequency distribution in a relation R as pR. Given two relations R1 and R2 being joined on their

first attribute without loss of generality, we can calculate the output cardinality of the join by

iterating over the intersection of the join attribute domains.

q1 = R1 ./R1.A1=R2.A1 R2

p (q1) = ∑
v∈R1.A1∩R2.A1

pR1 (A1 = v) pR2 (A1 = v) (3.9)

Using the set intersection of R1.A1 and R2.A1 is necessary because the domains may not be

equal and we do not assume the frequency distributions to be defined outside the attribute

domains.

When additional selections σ1 and σ2 are applied to the attributes of R1 and R2, we interpret

them as sets of conjunctive predicates that are passed to the relative frequency distributions.

q2 = σ1 (R1) ./R1.A1=R2.A1 σ2 (R2)

p (q2) = ∑
v∈R1.A1∩R2.A1

pR1 (A1 = v ∧ σ1) pR2 (A1 = v ∧ σ2)
(3.10)

In case there is a selection with an equality predicate on one of the join keys, assume it is

R1.A1 = v, there is no need to sum over all values in the intersection.

p (q2) = pR1 (A1 = v ∧ σ1) pR2 (A1 = v ∧ σ2) (3.11)
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If the query is extended by an additional selection and join on table R3 either of the following

two cases apply: (1) If one of the join attributes was already part of the previous join, the

attribute domain participates in the intersection. Without loss of generality, say R2.A1 joins

with R3.A1.

q3 = σ1 (R1) ./R1.A1=R2.A1 σ2 (R2) ./R2.A1=R3.A1 σ3 (R3)

p (q3) = ∑
v∈R1.A1∩R2.A1∩R3.A1

pR1 (A1 = v ∧ σ1) pR2 (A1 = v ∧ σ2) pR3 (A1 = v ∧ σ3)
(3.12)

(2) If the join attribute matches a different attribute in the previous relations, the Cartesian

product of the attribute intersections has to be considered. Without loss of generality, say R2.A2

joins with R3.A1.

q4 = σ1 (R1) ./R1.A1=R2.A1 σ2 (R2) ./R2.A2=R3.A1 σ3 (R3)

p (q4) = ∑
v1∈R1.A1∩R2.A1;
v2∈R2.A2∩R3.A1

pR1 (A1 = v1 ∧ σ1) pR2 (A1 = v1 ∧ A2 = v2 ∧ σ2) pR3 (A1 = v2 ∧ σ3)

(3.13)

Repeatedly applying this scheme allows us to calculate the selectivity of arbitrary equi-joins

queries with selections.

3.3 Using the Categorical Kernel for Two-Way Joins
The categorical kernel enables us to calculate the selectivity of two-way joins subject to op-

tional selections with conjunctive equality predicates on base tables. Naively, we can calculate

the join selectivity by substituting the exact distribution functions pR1 and pR2 in Equation

3.10 by the estimated distributions p̂R1 and p̂R2 provided by Kernel Density Estimators as de-

scribed in Section 3.1. The discrete Kernel Density Estimator p̂R1 is specified by the sample

S1 = {~s(1), ...,~s(m)} and the bandwidth vector ~λ; The estimator p̂R2 is specified by the sample

S2 = {~t(1), ...,~t(n)} and the bandwidth vector ~γ.

q : σ1 (R1) ./R1.A1=R2.A1 σ2 (R2)

p̂ (q) = ∑
v∈R1.A1∩R2.A1

p̂R1 (A1 = v ∧ σ1) p̂R2 (A1 = v ∧ σ2)
(3.14)

The join attributes are assumed to not take part in the selections, as Equation 3.11 shows this

case is trivial and reduces to a multiplication of two base table estimates. Evaluating the equa-

tion in this form is not suitable for selectivity estimation: Selecting an algorithm for comput-

ing the set intersection between the join attributes raises the same optimization problem as
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3.3. Using the Categorical Kernel for Two-Way Joins

selecting a join algorithm. Moreover, computing this intersection would be as expensive as

computing the join itself. Similar to the case of point queries in Section 3.1.1, we introduce an

assumption relieving us from computing the intersection:

Assumption: The domains of the join attributes are equal, i.e. R1.A1 = R2.A1 = A.

We will discuss the severity of this assumption in Section 3.7. Furthermore, properties of the

categorical kernel have to be utilized to calculate estimates efficiently. First, we substitute the

distributions by their definition equivalent to Equation 3.1.1.

p̂ (q) = ∑
v∈A




1
n

m

∑
i=1

kλj

(
s(i)j , v

)
∏

(Aj=xj)∈σ1

kλj

(
s(i)j , xj

)
︸ ︷︷ ︸

r(i)1




1
m

n

∑
i=1

kγj

(
t(i)j , v

)
∏

(Aj=xj)∈σ2

kγj

(
t(i)j , xj

)
︸ ︷︷ ︸

r(i)2




= ∑

v∈A

(
1

m · n

(
m

∑
i=1

kλj

(
s(i)j , v

)
r(i)1

)(
n

∑
i=1

kγj

(
t(i)j , v

)
r(i)2

))
(3.15)

Note that the variable indexed by the outer sum only affects the kernels on the join attribute.

The invariant contribution of the kernels on the selection predicates is factored out for every

sample point s(j) from Sk and summarized by r(j)
k . Note that in case of no selection, i.e. σk = {},

r(j)
k is always one.

Finally, we remove the need to sum over the entire set of distinct values in A by using the

property that the categorical kernel assigns the same probability if its arguments are not equal.

From this property follows that the Kernel Density Estimators in Equation 3.15 will assign

the same probability for every v that is not included in either of the samples. We denote the

unnormalized estimates for join values that are not in Sk by the quantity Ωk.

p̂ (q) = ∑
v∈S1.A1∪S2.A1

(
1

m · n

(
m

∑
i=1

kλj

(
s(i)j , v

)
r(i)1

)(
n

∑
i=1

kγj

(
t(i)j , v

)
r(i)2

))

+
|A\(S1.A1∪S2.A1)|

m · n

(
λ1

|A| − 1

m

∑
i=1

r(i)1

)
︸ ︷︷ ︸

Ω1

(
γ1

|A| − 1

n

∑
i=1

r(i)2

)
︸ ︷︷ ︸

Ω2

(3.16)

Observing the relationship between Ω1 and the value of the first inner summer for a value v,

we find that they only differ in the contributions for sample points i with s(i)1 = v. The same

relationship holds for Ω2 and second inner sum. This allows us to substitute the sums over all

sample points by equivalent representations using Ω1 and Ω2 and sums over disjoint subsets
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of the samples.

p̂ (q) = ∑
v∈(S1.A1∪S2.A1)

 1
m · n

Ω1 + (1− λ1) ∑
i:s(i)1 =v

r(i)1 −
λ1

|A| − 1 ∑
i:s(i)1 =v

r(i)1


Ω2 + (1− γ1) ∑

i:t(i)1 =v

r(i)1 −
γ1

|A| − 1 ∑
i:t(i)1 =v

r(i)2

+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·Ω2

= ∑
v∈(S1.A1∪S2.A1)

 1
m · n

Ω1 +

(
1− λ1 −

λ1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1


Ω2 +

(
1− γ1 −

γ1

|A| − 1

)
∑

i:t(i)1 =v

r(i)2

+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·Ω2

(3.17)

This is the underlying equation for the estimation algorithm introduced in Section 3.4.1.

As we want to perform error-driven optimization of the bandwidth parameter with a gradient-

based optimization algorithm, we need to compute the gradient for the previous Equation

with respect to the bandwidth operators as well. The gradient for the bandwidth on the join

attributes is given by:

∂

∂λ1
p̂ (q) = ∑

v∈(S1.A1∪S2.A1)

 1
m · n

 ∂

∂λ1
Ω1 +

(
−1− 1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1


Ω2 +

(
1− γ1 −

γ1

|A| − 1

)
∑

i:t(i)1 =v

r(i)2

+
|A\(S1.A1∪S2.A1)|

m · n ·
(

∂

∂λ1
Ω1

)
·Ω2

(3.18)

∂

∂γ1
p̂ (q) = ∑

v∈(S1.A1∪S2.A1)

 1
m · n

Ω1 +

(
1− λ1 −

λ1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1


 ∂

∂γ2
Ω2 +

(
−1− 1

|A| − 1

)
∑

i:t(i)1 =v

r(i)2

+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·
(

∂

∂γ2
Ω2

) (3.19)

The gradient for Ω1 and Ω2 is given by the following Equations. Restricting the bandwidth pa-

rameters to λl , γl ∈ (0, 1) allows us to compute the gradient directly from previously computed

Ω1 and Ω2.

∂

∂λ1
Ω1 =

1
|A| − 1

m

∑
i=1

r(i)1

=
λ1 6=0

Ω1

λ1

(3.20)
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∂

∂γ1
Ω2 =

1
|A| − 1

n

∑
i=1

r(i)2

=
γ1 6=0

Ω2

γ1

(3.21)

The gradient with respect to the other bandwidth components for attributes participating in

the selections are given by the following equations:

Case (λl = xl) ∈σ1 :

∂

∂λl
p̂ (q) = ∑

v∈(S1.A1∪S2.A1)

 1
m · n

 ∂

∂λl
Ω1 +

(
1− λ1 −

λ1

|A| − 1

)
∑

i:s(i)1 =v

∂

∂λl
r(i)1


Ω2 +

(
1− γ1 −

γ1

|A| − 1

)
∑

i:t(i)1 =v

r(i)2


+
|A\(S1.A1∪S2.A1)|

m · n · ( ∂

∂λl
Ω1) ·Ω2

∂

∂λl
Ω1 =

λ1

|A| − 1

n

∑
i=1

∂

∂λl
r(i)1 (σ1)

∂

∂λl
r(i)1 =

(
∂

∂λl
kλl

(
s(i)j , xl

))
∏

(Aj=xj)∈σ1 :j 6=l
kλj

(
s(i)j , xj

)

=
λl 6=0

−
r(i)1

1−λl
s(i)j = xl

r(i)1
λl

s(i)j 6= xl

Case (λl = xl) /∈σ1 :

∂

∂λl
p̂ (q) = 0

(3.22)
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Case (γl = xl) ∈σ2 :

∂

∂γl
p̂ (q) = ∑

v∈(S1.A1∪S2.A1)

 1
m · n

Ω1 +

(
1− λ1 −

λ1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1


 ∂

∂γl
Ω2 +

(
1− γ1 −

γ1

|A| − 1

)
∑

i:t(i)1 =v

∂

∂γl
r(i)2


+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·
(

∂

∂γl
Ω2

)
∂

∂γl
Ω2 =

γ1

|A| − 1

n

∑
i=1

∂

∂γl
r(i)1

∂

∂γl
r(i)2 =

(
∂

∂γl
kλl

(
t(i)j , xl

))
∏

(Aj=xj)∈σ2 :j 6=l
kλj

(
t(i)j , xj

)

=
γl 6=0

−
r(i)2

1−γl
t(i)j = xl

r(i)2
γl

t(i)j 6= xl

Case (γl = xl) /∈σ2 :

∂

∂γl
p̂ (q) = 0

(3.23)

The gradients ∂
∂λi

r(i)1 and ∂
∂γi

r(i)2 are computed by substituting the kernel on attributes S1.Aj and

S2.Aj respectively with the gradient given in Equation 3.4. Note that these derivatives can be

computed from previously computed r(i)1 and r(i)2 by restricting the bandwidth components to

(0, 1).

3.4 Algorithm
The formulae obtained in the previous Section motivate an algorithm for computing the selec-

tivity of two-way joins selections using conjunctive equality predicates on base tables as well

as the gradient of the error function with respect to the bandwidth parameter. We assume the

number of distinct values for every attribute |A| as given, as the number of distinct values per

attribute is a common statistic in relational database systems. The algorithms are given in a

Python-style pseudo code; Note that indentation indicates code blocks. We discuss generaliza-

tions to an arbitrary number of joins in Section 3.5.

3.4.1 Estimation

The selectivity estimation algorithm consists of five steps. The first three steps are given in

Listing 3.1.
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Step 1 (Line 5 - 8): We need to establish the domain equality assumption. To ensure that the

selectivity stays in [0, 1] in case the assumption is violated, we set the number of distinct

elements on the join attribute to the larger one.

Step 2 (Line 11 - 15): We sort both samples on the join attribute. Every sample additionally

stores the attribute it is sorted on. We can therefore save computational effort in case one

of the samples is sorted already.

Step 3 (Line 18 - 36): We scan the first sample S1. We compute the invariant sample point con-

tributions r(i)1 for every sample point and compute Ω1 by incrementally summing them

up and scaling with λ1
|A|−1 . The same steps are performed for the sample S2, r(i)2 and Ω2.

The remaining two steps are given in Listing 3.2:

Step 4 (Line 5 - 33): We use a merge algorithm on the join attribute and the previously com-

puted invariant contributions. The algorithm groups the sample points in both relations

by the join key, performs an aggregation of the invariant contributions and computes the

unnormalized estimated probabilities v1 and v2 based on Ω1 and Ω2. These probabilities

are then merged by normalizing, multiplying for all join keys v and adding to the overall

selectivity estimate p. In case only one of the samples contains a particular join key, the

samples are merged directly with the other samples Ω value as this value already repre-

sents the unnormalized estimate for join keys that are not part of the respective sample.

The merging is sketched in Figure 3.3. Additionally, the algorithm counts the number of

distinct handled values dvals, which is the quantity |S1.A1 ∪ S2.A2|.

Step 5 (Line 35): The algorithm adds the contribution for all |A| − |S1.A1 ∪ S2.A2| values that

are not in either of the samples by adding the join estimate for all join keys in neither of

the samples.

1
2
2

3

2
2
3
3
4

Figure 3.3: Merging step in the estimation algorithm

In case the samples are sorted, executing the algorithm requires only two passes over the

sample. Hence, the runtime is linear in the sample size. Otherwise, we have to execute a

sorting algorithm with a runtime complexity in O(|S|log|S|) for every sample S.
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Listing 3.1: Pseudocode for Step 1 to 3 of the join selectivity estimation algorithm

1 r1 = [ 1 , . . . , 1 ]
2 r2 = [ 1 , . . . , 1 ]
3 Ω1 , Ω2 = 0 . 0
4

5 i f |R1.A1| > |R2.A1| :
6 |A| = |R1.A1|
7 e lse :
8 |A| = |R2.A1|
9

10 #Sort samples if necessary
11 i f not S1 . sortedOn ( A1 ) :
12 S1 . sort_on ( A1 )
13

14 i f not S2 . sortedOn ( A1 ) :
15 S2 . sort_on ( A1 )
16

17 #Calculate Omega values

18 for ~s(i) in S1 :
19 r(i)1 = 1 . 0
20 for (Aj = xj) in σ1 :

21 i f ~s(i)j == xj :

22 r(i)1 *= (1− λj)
23 e lse :
24 r(i)1 *= λj / (|R1.Aj| − 1)

25 Ω1 += r(i)1
26 Ω1 *= λ1 /(|A|)
27

28 for ~t(i) in S2 :
29 r(i)2 = 1 . 0
30 for (Aj = xj) in σ2 :

31 i f ~t(i)j == xj :

32 r(i)2 *= (1− γj)
33 e lse :
34 r(i)2 *= γj / (|R2.Aj| − 1)

35 Ω2 += r(i)2
36 Ω2 *= γ1 /(|A|)
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Listing 3.2: Pseudocode for Step 4 and 5 of the join selectivity estimation algorithm

1 #Perform merge-style computation of the outer sum and distinct values
2 p = 0 . 0
3 dvals = 0
4

5 i , j = 1
6 i f s(i)1 ≤ t(j)

1 :
7 cur = s(i)1
8 e lse :
9 cur = t(j)

1
10

11 while i ≤ n or j ≤ m:
12 dvals += 1
13 v1 = Ω1
14 v2 = Ω2

15 while i ≤ m and s(i)1 == cur :
16 v1 += (1.0− λ1 − λ1

|A|−1 ) · (r
(i)
1 )

17 i += 1
18

19 while j ≤ n and t(j)
1 == cur :

20 v2 += (1.0− γ1 − γ1
|A|−1 ) · (r

(j)
2 )

21 j += 1
22

23 p += v1 \cdot v2 /(m \cdot n )
24

25 i f i ≤ m and j > n :
26 cur = s(i)1
27 e l i f i > m and j ≤ n :
28 cur = t(j)

1
29 e lse :
30 i f s(i)1 ≤ t(j)

1 :
31 cur = s(i)1
32 e lse :
33 cur = t(j)

1
34

35 p += |A|−dvals
m·n ·Ω1 ·Ω2
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3.4.2 Error-Driven Bandwidth Optimization

Like with continuous Kernel Density Estimators, we can optimize the bandwidth parameter

based on query feedback as all our previous results were continuously differentiable with re-

spect to the bandwidth. For this thesis, we chose the batch-optimization approach, as it pro-

vided the best overall results in our previous work and is therefore best suited to assess the

potential of our approach. First, we collect a set of representative queries with their true selec-

tivities. During the collection, the estimator can already provide estimates by setting the band-

width close to zero, which yields a simple sample estimator. Second, we use the constrained

gradient-based optimization algorithm MMA [47] to optimize the bandwidth for a bandwidth

vector ~λ with respect to a loss function L(x, y) on the estimated selectivity x and the true se-

lectivity y. Formally, for a set of queries Q = {q1, ..., qn}, we solve the following optimization

problem:

argmin
~λ

∑
qi∈Q
L
(

p̂~λ (qi) , p (qi)
)

(3.24)

The gradient of the objective with respect to a bandwidth vector ~λ is given by the sum of the

gradient for every query:

∂

∂~λ
L
(

p̂~λ (qi) , p (qi)
)
= ∑

qi∈Q

∂

∂~λ
L
(

p̂~λ (qi) , p (qi)
)

(3.25)

Using the chain rule yields the following derivative for L:

∂

∂~λ
L
(

p̂~λ, (qi) , p (qi)
)
=

∂

∂ p̂~λ (qi)
L
(

p̂~λ (qi) , p (qi)
)
· ∂

∂~λ
p̂~λ (qi) (3.26)

The gradient of the loss function with respect to the estimate is independent of the actual query

and can even be computed before the database finished query execution. While any continu-

ously differentiable loss function suffices, we chose the quadratic error LQuadratic for this thesis,

mainly because of good experiences in our previous publication [21].

LQuadratic
(

p̂~λ (qi) , p (qi)
)
=
(

p̂~λ (qi)− p (qi)
)2

∂

∂ p̂~λ (qi)
LQuadratic

(
p̂~λ (qi) , p (qi)

)
= 2 ·

(
p̂~λ (qi)− p (qi)

) (3.27)

The queries in Q can consist of all operators supported by the kernels on the attributes. In case

of models using only the categorical kernel, the queries can consist of selections with equality

predicates and joins. If the query only consists of selections, the computation of the error-

independent gradient of the estimator with respect to the bandwidth vector can be computed

incrementally in one single pass following Equation 3.8. In case the query includes joins, we
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have to compute the more sophisticated gradient given in Equations 3.18 to 3.23. We provide a

five step algorithm that exhibits a structure similar to the estimation algorithm. The first three

steps are given in 3.3.

Step 1 (Line 6 - 9): We need to establish the the domain equality assumption. To ensure the

selectivity stays in [0, 1] in case the assumption is violated, we set the number of distinct

elements on the join attribute to the larger one.

Step 2 (Line 12 - 16): We sort both samples on the join attribute. Every sample additionally

stores the attribute it is sorted on. We can therefore save computational effort in case one

of the samples is sorted already.

Step 3 (Line 19 - 39): We scan the first sample S1. We compute the gradient of the invariant

sample point contributions ∂
∂~λ

r(i)1 for every sample point and compute ∂
∂~λ

Ω1. To do so,

we reuse r(i)1 and Ω1, which are computed in the estimation algorithm. In case these

quantities are not available, they can be re-computed in the same pass over the sample.

The same steps are performed for the sample S2, ∂
∂~γ r(i)2 and ∂

∂~γ Ω2.

The remaining two-steps are given in 3.4.

Step 4 (Line 5 - 41): We use a merge algorithm on the join attribute and the previously com-

puted gradients to compute the gradient contributions for every value in S1 ∪ S2.

Step 5 (Line 43 - 44): We add the gradient contributions for all values that are not in S1 ∪ S2.

Like the estimation algorithm, the gradient algorithm requires two passes over the sample

plus the cost of up to two sorts in case the samples were not sorted on the join key already. Note

that the scan and merge phases of the estimation and gradient algorithm can be combined such

that only two passes over the sample are necessary to compute both quantities.
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Listing 3.3: Pseudocode for Step 1 to 3 of the gradient algorithm for join selectivities

1
∂

∂~λ
r1 = [ [ 0 , . . . , 0 ] , . . . , [ 0 , . . . , 0 ] ]

2
∂

∂~γ r2 = [ [ 0 , . . . , 0 ] , . . . , [ 0 , . . . , 0 ] ]
3

∂
∂~λ

Ω1 = [ 0 , . . 0 ]
4

∂
∂~γ Ω2 = [ 0 , . . 0 ]

5

6 i f |R1.A1| > |R2.A1| :
7 |A| = |R1.A1|
8 e lse :
9 |A| = |R2.A1|

10

11 #Sort samples if necessary
12 i f not S1 . sortedOn ( A1 ) :
13 S1 . sort_on ( A1 )
14

15 i f not S2 . sortedOn ( A1 ) :
16 S2 . sort_on ( A1 )
17

18

19 for ~s(i) in S1 :
20 for (Aj = xj) in σ1 :

21 i f ~s(i)j == xj :

22
∂

∂λj
r(i)1 = r(i)1 / −(1− λj)

23 e lse :
24

∂
∂λj

r(i)1 = r(i)1 / λj

25
∂

∂λj
Ω1 += ∂

∂λj
r(i)1

26
∂

∂λ1
Ω1 = Ω1/λ1

27 for (Aj = xj) in σ1 :
28

∂
∂λj

Ω1 *= λ1 / (|A|−1)

29

30 for ~t(i) in S2 :
31 for (Aj = xj) in σ2 :

32 i f ~t(i)j == xj :

33
∂

∂γj
r(i)2 = r(i)2 / −(1− γj)

34 e lse :
35

∂
∂γj

r(i)2 = r(i)2 / γj

36
∂

∂γj
Ω2 += ∂

∂γj
r(i)2

37
∂

∂γ1
Ω2 = Ω2/γ1

38 for (Aj = xj) in σ2 :
39

∂
∂γj

Ω2 *= γ1 / (|A|−1)
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Listing 3.4: Pseudocode for Step 4 and 5 of the gradient algorithm for join selectivities

1
∂

∂~λ
p = [ 0 , . . . , 0 ]

2
∂

∂~γ p = [ 0 , . . . , 0 ]
3 dvals = 0
4

5 i , j = 1
6 i f s(i)1 ≤ t(j)

1 :
7 cur = s(i)1
8 e lse :
9 cur = t(j)

1
10

11 while i ≤ m or j ≤ n :
12 dvals += 1
13 v1 = Ω1
14 ~κ = ∂

∂~λ
Ω1

15 while i ≤ m and s(i)1 == cur :
16 for (Al = xl) in σ1 :
17 κl += (1.0− λ1 − λ1

|A|−1 ) ·
∂

∂λl
r(i)1

18 κ1 += (−1.0− 1.0
|A|−1 ) · r

(i)
1

19 v1 += (1.0− λ1 − λ1
|A|−1 ) · r

(i)
1

20 i += 1
21

22 v2 = Ω2
23 ~ϑ = ∂

∂~γ Ω2

24 while j ≤ n and t(j)
1 == cur :

25 for (Al = xl) in σ2 :
26 ϑl += (1.0− γ1 − γ1

|A|−1 ) ·
∂

∂γl
r(j)

2

27 ϑ1 += (−1.0− 1.0
|A|−1 ) · r

(j)
2

28 v2 += (1.0− γ1 − γ1
|A|−1 ) · r

(j)
2

29 j += 1
30

31
∂

∂~λ
p += 1

m·n~κ · v2
32

∂
∂~γ p += 1

m·n v1 ·~ϑ
33 i f i ≤ m and j > n :
34 cur = s(i)1
35 e l i f i > m and j ≤ n :
36 cur = t(j)

1
37 e lse :
38 i f s(i)1 ≤ t(j)

1 :
39 cur = s(i)1
40 e lse :
41 cur = t(j)

1
42

43
∂

∂~λ
p += |A|−dvals

m·n · ( ∂
∂~λ

Ω1) ·Ω2

44
∂

∂~γ p += |A|−dvals
m·n ·Ω1 · ( ∂

∂~γ Ω2)
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3.4.3 GPU-Implementation

Estimation and gradient computation for selections can be easily implemented on a GPU by

computing the individual contribution of sample points in parallel and computing the sum

using a binary reduction scheme. Except for the different formulae for estimation and gradient,

all mechanisms introduced in Section 2.3.1 can be used for the categorical kernel as well.

However, adapting the join selectivity estimation algorithm for GPUs is a more complex task.

Sorting the sample on the GPU can be done using GPU sorting algorithms like Bitonic-Merge

Sort [37]. To sketch how the algorithm can be implemented on a GPU, we slightly modify

Equation 3.17 to highlight intermediate results computed during the algorithm.

p̂ (q) = ∑
v∈(S1.A1∪S2.A1)

 1
m · n

Ω1 +

(
1− λ1 −

λ1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1


Ω2 +

(
1− γ1 −

γ1

|A| − 1

)
∑

i:t(i)1 =v

r(i)2


︸ ︷︷ ︸

c2(v)

+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·Ω2

=
1

m · n ∑
v∈(S1.A1∪S2.A1)

Ω1c2 (v) +
(

1− λ1 −
λ1

|A| − 1

)
∑

i:s(i)1 =v

r(i)1 c2 (v)


︸ ︷︷ ︸

c(v)

+
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·Ω2

=
1

m · n ∑
v∈(S1.A1∪S2.A1)

c (v) +
|A\(S1.A1∪S2.A1)|

m · n ·Ω1 ·Ω2

(3.28)

The quantities r(i)1 and r(i)2 can be computed independently by different GPU threads for

every sample point. The quantities Ω1 and Ω2 can be computed by summing over the previous

values using a binary reduction scheme. This corresponds to the scan of the sample in the

sequential algorithm. Figure 3.4 schematically shows the steps of the algorithm that lead to the

computation of Ω1 for a toy example.

Computing the product of the per-sample contributions c(v) for every value v ∈ S1.A1 ∪
S2.A1 corresponds to the merge step in the sequential algorithm. For a GPU implementation,

we suggest an algorithm that resembles a binary search join [19]. We select one relation as

the probe relation - assume it is S2. We have one thread tx, x ∈ {1, |S1|} for each tuple in S1.
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1
1
2
2

Compute  
invariant 
contributions Parallel sum

Figure 3.4: Computation of invariant contributions r and Ω in the GPU algorithm for a toy example

Every thread performs a binary search in S2 for matching join keys. Given vx being the join

key of tuple~sx, every thread tx incrementally computes c2 (vx) by visiting matching tuples and

stores the value at position x − 1 a buffer C1. In case a thread tx does not find at least one

qualifying tuple in S2, it sets c2(vx) = Ω2, which is consistent with the definition of c2. Using

this technique, the algorithm can compute c2(v) for all values v ∈ S1.A1. However, values that

are in S2.A1 \ S1.A1 have to be treated as well to cover all values v ∈ S2.A1 ∪ S1.A1. To do so,

every tuple in S2 is assigned a flag in a buffer F, that is initially zero for all tuples. Whenever a

thread vx finds a matching tuple~sx during the binary search it sets the corresponding flag in F,

signaling that the join key is also included in S1.

Figure 3.5 shows the state of the algorithm for the toy example after performing the binary

search step with probe sample S2. The arrows point from sample points that have been found

during the binary search to the positions in the buffer C1 they contributed to. Every tuple in S2

with an originating arrow has its flag in F set.

1
1
2
2

1
1
3
3

1
1
0
0

Figure 3.5: State of the GPU algorithm after performing the binary search step for a toy example

After these computations, we need to perform one further aggregation step to compute c(v)
for all values v ∈ S1.A1. For all values v in S1.A1, we basically need to compute ∑i:s(i)1 =v

r(i)1 c2 (v),
the remaining operations can be applied in a finalizing step of this computation. We implement

this computation by performing atomic add operations to an output buffer.

To do so, every tuple with a join key v needs to perform an atomic add to the same position in

the output array. We use a common pattern in GPU programming to compute these positions
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that is based on evaluating a binary predicate and computing a prefix sum [19, 37].

To compute the predicate, every thread tx, x ∈ {1, |S1|} sets its position in a zero initialized

buffer to one, whenever~s(x) is the first tuple in the sorted sample that has join key vx. After-

wards, a prefix sum with an initial value of −1 can be computed from this buffer to assign a

unique position in an output array to every v. As the samples are sorted on the join key, tuples

with the same join key are assigned the same value by the prefix sum. Furthermore, the prefix

sum allows us to determine the number of distinct keys in S1.

We apply similar computations to compute c(v) for all v ∈ S2.A1 \ S1.A1. As these join keys

v have no matching join key in R1, the computation of c(v) reduces to Ω1 · c2(v). All tuples

with such keys have been identified in the binary search step by leaving their flag in F unset.

The quantity c2(v) for these values can be computed using atomic add operations as well and

all threads responsible for tuples with the same join key v ∈ S2.A1 \ S1.A1, have to add to the

same position in an output buffer. We evaluate the same predicate for every tuple in S2, but

additionally require an unset flag in F to evaluate to 1. Afterwards, we apply the prefix sum.

Figure 3.6 shows the results of the predicate and prefix sum computations for both samples

of our toy example. For S1, the prefix sum assigns the position 0 to join key 1 and position

1 to join key 2. Note that the last entry of the prefix sum plus one yields |S1.A1|. For S2 the

modified prefix sum assigns position −1 to join key 1 as the predicate evaluated to 0. Tuples

with this join key are covered already by S1 and, thus, do have their flag in F set. For join key

3 position 0 is assigned subsequently. Note that the last entry of the prefix sum plus one yields

|S2.A1 \ S1.A1|.

0

0

Compute
predicate

Compute
prefix sum

-1

0
-1

0

0
1

1
1
2
2

1

1
0

0

Compute
predicate

Compute
prefix sum

0

1
0

1

1
1
3
3

1
1
0
0

Figure 3.6: Computation of predicates and prefix sums in the GPU algorithm for a toy example

Now, every thread tx, x ∈ {1, |S1|} can compute r(x)
1 · c2(v) and use an atomic add operation

to its position in the output array, a finalizing step adds Ω1 and scales the aggregates to yield

c(v). Similarly, we compute c(v) for v ∈ S2.A1 \ S1.A1. However, only the tx with an unset flag

in F participate in the aggregation. Note that in current GPUs atomic add operations are only

supported for 32-bit floating point types [35].

Figure 3.7 shows the application of this step. For every sample, each entry in the respective

prefix sum that is non-negative corresponds to a position in the output array.
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Figure 3.7: Computation of c(v) in the GPU algorithm for a toy example

After these computations, all quantities required for the estimate computation are readily

available and can be computed in a last finalizing step that sums all c(v) values and performs

the remaining trivial computations.

Computing the gradient can be implemented in a similar fashion as estimation and gradient

computation follow the same structure.

3.4.4 Sample Maintenance

The sample can be maintained by the exact or heuristic algorithms for sample maintenance. An

overview of possible algorithms is given in [28]. As our algorithm for join selectivity estimation

requires a sample sorted on a join key, sample points replaced by a maintenance algorithm may

break an existing sort order. Either the new sample point has to be inserted order preserving

or the sample has to be flagged unordered to trigger re-sorting at the next arriving estimation

request. Ordered insertion is preferable when the majority of requests deal with the same join

attribute and an existing order can be reused. Resorting the entire sample is preferable when

join attributes change frequently.

3.5 Generalization for n-Way Joins
The equalities and algorithms in the previous two Sections can be extended to n-way joins

including a total of n equi-join operators. We revisit the two remaining cases in Section 3.2. If

one of the join attributes in an additional join is one of the previously joined columns, extending

the algorithm is simple. Again, we substitute the true selectivity p for the estimate provided by

Kernel Density Estimator and restrict the selections to equality predicates.

q3 : σ1 (R1) ./R1.A1=R2.A1 σ2 (R2) ./R2.A1=R3.A1 σ3 (R3)

p̂ (q3) = ∑
v∈R1.A1∩R2.A1∩R3.A1

p̂R1 (A1 = v ∧ σ1) p̂R2 (A1 = v ∧ σ2) p̂R3 (A1 = v ∧ σ3)
(3.29)

43



3.5. Generalization for n-Way Joins

This simply extends the existing case by an additional relation and does not introduce further

complexity. We assume |A| = |R1.A1| = |R2.A1| = |R3.A1| and apply the same transforma-

tions given in Section 3.3. The estimation and gradient algorithm sort, scan and merge the third

sample together with the other ones.

Unfortunately, in case the join attributes do not match a previously joined attribute, addi-

tional complexity is introduced as a Cartesian product of the join keys has to be considered.

q4 : σ1 (R1) ./R1.A1=R2.A1 σ2 (R2) ./R2.A2=R3.A1 σ3 (R3)

p̂ (q4) = ∑
v1∈R1.A1∩R2.A1;
v2∈R2.A2∩R3.A1

p̂R1 (A1 = v1 ∧ σ1) p̂R2 (A1 = v1 ∧ A2 = v2 ∧ σ2) p̂R3 (A1 = v2 ∧ σ3)

(3.30)

A possible approach would be computing p̂R1 (A1 = v1 ∧ σ1) for all values v1 and starting an

instance of the two-way join algorithm for the remaining two relations with A1 = v1 fixed

by a selection. However, this approach does not scale as the number of estimator evaluations

depends on the domains of the attributes. Making an independence assumption for relations

with multiple join attributes, allows us to maintain the scalability of the algorithm. We partition

the attributes participating in the selection σ2 into two disjoint selections σ2.1 and σ2.2 which are

assigned to either one of the join attributes and considered independent. For this thesis, we

partition the selections evenly based on their position in the relation schema.

p̂R2 (A1 = v1 ∧ A2 = v2 ∧ σ2) = p̂R2 (A1 = v1 ∧ σ2.1) p̂R2 (A2 = v2 ∧ σ2.2) (3.31)

This allows the following transformations:

p̂ (q4) =

∑
v1∈R1.A1∩R2.A1;
v2∈R2.A2∩R3.A1

p̂R1 (A1 = v1 ∧ σ1) p̂R2 (A1 = v1 ∧ σ2.1) p̂R2 (A2 = v2 ∧ σ2.2) p̂R3 (A1 = v2 ∧ σ3)

=

(
∑

v1∈R1.A1∩R2.A1

p̂R1 (A1 = v1 ∧ σ1) p̂R2 (A1 = v1 ∧ σ2.1)

)

·
(

∑
v2∈R2.A2∩R3.A1

p̂R2 (A2 = v2 ∧ σ2.2) p̂R3 (A1 = v2 ∧ σ3)

)
(3.32)

This quantity and its gradient can be computed by running two instances of the introduced

algorithms and multiplying their estimates.

We can estimate arbitrary equi-joins with equality selection predicates by applying the pre-
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viously introduced changes to the algorithms.

3.6 Discussion
We discuss properties and drawbacks of our estimators in this Section. Most importantly, Ker-

nel Density Estimator models using the categorical kernel can always be parameterized to yield

the relative frequency distribution in the sample by setting the components of the bandwidth

vector to zero. This is the case, as the categorical kernel always places contributes 1− λ when-

ever sample and function value coincide. Thus, the contribution of a sample point is only one

if it matches the function value entirely, given that all bandwidth components are zero. Hence,

our estimators can always be turned into estimators that are entirely based on the evaluation

of independent samples. This even works for our approach to join selectivity estimation for

two-way joins and n-way joins with one join attribute per table - despite our assumption of

equal value sets in join relations. Taking Equation 3.16 in Section 3.3 and setting ~λ and ~γ to

zero-vectors, we obtain:

p̂ (q) = ∑
v∈S1.A1∪S2.A1

(
1

m · n

(
m

∑
i=1

kλj

(
s(i)j , v

)
r(i)1

)(
n

∑
i=1

kγj

(
t(i)j , v

)
r(i)2

))

+
|A\(S1.A1∪S2.A1)|

m · n

(
λ1

|A| − 1

m

∑
i=1

r(i)1

)(
γ1

|A| − 1

n

∑
i=1

r(i)2

)

=
~λ=~0,~γ=~0

1
m · n ∑

v∈S1.A1∪S2.A1

((
m

∑
i=1

kλj

(
s(i)j , v

)
r(i)1

)(
n

∑
i=1

kγj

(
t(i)j , v

)
r(i)2

))

=
1

m · n ∑
v∈S1.A1∪S2.A1

|q (S1, S2) |

(3.33)

As the bandwidth vector is the zero vector, r(i)2 and r(j)
2 have a value of one, whenever their

respective sample points fulfill the selection predicate, otherwise they have a value of zero.

Similarly, kλj

(
s(i)j , v

)
and kγj

(
t(i)j , v

)
are one for all sample points with a value of v. Thus,

the sums over the sample points compute the number of tuples with a value v that fulfill the

selection predicates. Their product is the contribution of tuples with the value v to the join

between both samples. The sum over all values in both samples is the output cardinality of

the query evaluated on the samples, which, when divided by the product of the sample sizes,

yields the simple sampling estimator introduced in Section 2.2.1.

Our algorithm forbids bandwidth components that are equal to zero, as this restriction eases

the gradient computation. However, bandwidth components sufficiently close to zero practi-

cally have the same effect. As simple sample evaluation is part of the parameter space of the

error-driven bandwidth optimizer, a properly trained KDE model should not perform worse

than a simple sample based estimator under the optimized error function.
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The assumption of equal value sets in join attributes made in our estimation algorithm is

even stronger than the containment of value sets assumption in text-book selectivity estima-

tion (Section 2.1. However, error-driven bandwidth optimization has the possibility to balance

the impact of the assumption by choosing the bandwidth on the join attribute to place more

probability mass on values that are included in the sample. In the most extreme case, the band-

width on the join attribute can be chosen close to zero, which causes the estimator to place

probability mass only on values that are included in the sample and guaranteed to be present

in the relation (given there were no changes in the dataset). However, the assumption may

introduce a problem to error-driven bandwidth optimization. While it is possible to optimize

the bandwidth for a set of queries Q that consists of selections and bandwidth, we suggest

to maintain and optimize different bandwidth vectors for selections and joins. In case our as-

sumption of equal value domains on the join attribute is violated, the number of distinct values

on an attribute is adjusted for one relation. Thus, the bandwidth parameters for selections and

joins would not be computed based on the same model. Furthermore, as the errors in join size

estimates tend to be much larger than for selections, the bandwidth is likely to be a value that

is suboptimal for selections.

As Kernel Density Estimators are based on independent samples, it is an important ques-

tion whether the categorical kernel can fix the problems of independent uniform samples. The

severe drawback of independent samples is that they are not capable of modeling values that

are not fully included in the sample. When it comes to join selectivity estimation for relational

databases, this causes a problem: In case the number of distinct values in a join attribute is

larger than the sample size and the values are uniformly distributed or at least not significantly

skewed, samples need to be sufficiently large to have a reasonable chance of including match-

ing join values. If there are no matching join attributes, the estimator will output zero as the

join between two samples is empty. Kernel Density Estimator models using the categorical

kernel are capable of providing estimates for values that are not or only partially included in

the sample. Thus, the problem does not apply in the same way to our join selectivity esti-

mator. However, our estimator is nevertheless limited in the way that it can deal with join

keys that are not in the sample. Looking at Equation 3.16 again, a join value v that is not in-

cluded in a sample S1 always contributes the factor λ1
|A|−1 ∑m

i=1 r(i)1 . While this is the key fact

that allows us an efficient computation of join selectivity estimates, it also has important impli-

cations. Every value v not included in the sample will contribute the same probability, as the

factor is entirely independent of v. Thus, for every value that is not included in a sample, we

will not be able to provide estimates that capture the dependency between the join attribute

and selection attributes. Intuitively, this can be seen as making an independence assumption

of such values. In case |A| >> n and a close to uniform distribution in A, the majority of val-

ues will be computed using this simple factor. Furthermore, a bandwidth selector will likely
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account for the unobserved values by choosing a bandwidth λ1 close to one. Thus, we have
λ1
|A|−1 ∑m

i=1 r(i)1 ≈
1
|A| ∑m

i=1 r(i)1 , which is similar to making the uniformity assumption on the join

attribute. Thus, in case the sample is too small to provide reasonable estimates by means of

sample evaluation, our estimator falls back to estimates that rely on the independence and uni-

formity assumption. Thus, our estimator has inherited the problem of independent samples

but provides a better worst case.

In the following Chapter, we evaluate our estimator experimentally and show that the dis-

cussed properties of our estimator hold.
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4 Evaluation

In this Section we perform an experimental evaluation of our proposed estimators. We eval-

uate our estimators in terms of estimation quality on a synthetic and a real-world dataset and

compare them to other estimators to highlight their properties. Furthermore, we investigate

the performance of our estimators in terms of execution time for estimate and gradient compu-

tations.

4.1 Experimental Setup
First, we cover base table selections with conjunctive equality predicates. We compare three

estimators:

KDE: A discrete Kernel Density Estimator as described in Section 3.1.1.

Sample: A simple sample-based estimator for selections as described in Section 2.2.1. We draw

a simple random sample S without replacement from the input relations, evaluate queries

on the sample and scale the output cardinality by 1
|S| .

Postgres: The estimator used by a vanilla installation of the PostgreSQL [39] database system

(Version 9.5.0). We extract the estimates using the ANALYZE command. PostgreSQL

makes the attribute independence assumption and obtains per-column selectivities by

maintaining equi-width histograms, the frequencies of the most common values and the

number of distinct values [38].

Thus, we can compare the estimates of Kernel Density Estimator models to simple samples,

where we would expect KDE to provide equivalent or better estimates, and compare their

estimates against a popular database system as a baseline.

Second, we cover join selectivities. We compare five estimators:

JoinKDE: The join selectivity estimator based on two discrete Kernel Density Estimator models

as described in Section 3.3 to 3.5.

Sample: The simple sample based estimator described in Section 2.2.1.

AGMS: The AGMS Sketch with the extension to filter conditions as described in Section 2.2.2.
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We use the Polynomials over Primes scheme [41] to construct the 4-wise independent hash

functions.

Postgres: The estimator used by a vanilla installation of the PostgreSQL [39] database system

(Version 9.5.0). We extract the estimates using the ANALYZE command. PostgreSQL

makes the attribute independence assumption and obtains per-column selectivities from

equi-width histograms, the frequencies of the most common values and the number of

distinct values. Attribute uniformity is assumed on the join attribute. Except for the

more detailed per-column statistics for selections, the computations are equivalent to the

text-book approach given in Section 2.1 [30, 38].

KDE: A Kernel Density Estimator, as described in Section 3.1.1, that was constructed using

a uniform sample of the join result. With this baseline, we can compare the previous

estimators to a model that was constructed from the join result instead of using statistics

on the base tables.

We compare the estimators on two different datasets.

IMDb: The IMDb dataset [23] is a plain text dump of the Internet Movie Database that col-

lects and provides information on movies, TV programs and video games. We used the

IMDbPY [24] Python script to import the dataset in PostgreSQL.

Zipf(s): An artificial dataset that is based on the Zipfian distribution. Attribute c1 is obtained

by drawing 10000 values from a Zipfian distribution with parameter s. To limit the do-

main, we take the drawn values modulo 10000. The remaining attributes ci, i ∈ {2, 3, 4}
take the value of the previous attribute with probability 1

2i−1 , otherwise they take a ran-

dom value in [0, 9999].

The first dataset is used to show the performance on real-world data, while the second dataset is

used to show the behavior of the algorithm when it comes to skew and dependencies between

attributes.

We evaluate the estimators for queries that consist of up to two joins and selections with

equality predicates. We construct our queries by fixing a join attribute (if there is one) as well

as selection attributes. Then, we draw a uniform sample of 400 tuples from the query result

without applying selections, i.e. directly from a base table or join result. We use these tuples

to construct 400 queries by parameterizing the selections with the tuple value on the respec-

tive attribute. We use 300 of these queries to train the bandwidth parameter of Kernel Density

Estimator models. The bandwidth optimization was performed by an off-the-shelf implemen-

tation of the MMA algorithm [47] from the NLopt library [26] for nonlinear optimization. After-

wards, we use the remaining 100 queries for evaluation of all estimators. We report the average

squared estimation error in tuples for 20 iterations of training and evaluation.
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4.2. Model Size & Estimation Quality

4.2 Model Size & Estimation Quality
In the following experiments we evaluate the behavior of the estimators for selections and

joins with respect to estimation quality for varying model sizes. We assume every attribute

in samples to be given as an integer. For AGMS, we account one integer for every sketch and

every seed required for the hash function. Though our hash function requires four seeds, we

chose to account only one seed as there exist more memory-efficient hashing schemes [41]. The

reported model size is the number of tuples used for a single sample in the Sample estimator.

All other estimators are set up to use the same amount of memory.

4.2.1 Selections

First, we evaluate the estimation quality of our estimator for base table selections only. We start

with a set of queries on the IMDb dataset and show how estimates are effected by incrementally

adding selections. Query set IMDb QA selects from the title table that contains 3.5 million

tuples for every opus in the Internet Movie Database:

IMDb QA.1: Select all opuses that were produced in a given year.

select * from title where production_year = $x

IMDb QA.2: Select all opuses that were produced in a given year and are of a certain kind (for

example TV series or game).

select * from title where production_year = $x and kind_id = $y

IMDb QA.3: Select all opuses that were produced in a given year, are of a given kind and have

a given season number.

select * from title where production_year = $x

and kind_id = $y and season_nr = $z

Figure 4.1 shows boxplots for the average squared estimation error of these queries for Post-
gres as well as Sample and KDE with varying sample sizes. The errors for Sample and KDE
barely differ. The error-driven bandwidth selector has chosen to the bandwidth close to zero

rendering KDE and Sample equivalent. Postgres performs very well for selections on a single at-

tribute (IMDb QA.1) and large samples are required to outperform it. However, when multiple

selections are involved even small samples provide significantly better estimates as the inde-

pendence assumption introduces errors. For example, much more video games were produced

in years after the millennium than before.

As the selections in the previous query have a high selectivity, we tested the estimator on the

query set IMDb QB with more restrictive selections. It selects tuples from the cast_info table

51



4.2. Model Size & Estimation Quality

 1x107

 1x108

2048 4096 8192 16384 32768 PostgresAv
er

ag
e 

sq
ua

re
d 

es
tim

at
io

n 
er

ro
r (

lo
g-

sc
al

ed
)

Model size / Postgres

Sample KDE Postgres

(a) Estimation quality for query IMDb QA.1
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(b) Estimation quality for query IMDb QA.2
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(c) Estimation quality for query IMDb QA.3

Figure 4.1: Estimation quality for query set IMDb QA covering selections on base tables

that contains 50 million tuples linking items from the title table to their cast.

IMDb QB.1: Select all persons that are cast members of a given opus.

select * from cast_info where movie_id = $x

IMDb QB.2: Select all persons that are cast members of a given movie fulfilling a given role

(e.g. actor, composer, director).

select * from cast_info where movie_id = $x and role_id = $y

Figure 4.2 shows the error plots for this query set. For these queries, KDE performs clearly

better for most sample sizes. For both queries, we see the estimation quality of Sample dete-

riorating with the model size. While the loss in accuracy might seem counter-intuitive, it is

easy to explain: Sample can only return non-zero estimates when at least one tuple matches the

predicates. For small sample sizes the probability that one of the evaluation queries matches

tuples in the sample is low due to the selection on the attribute movie_id, that contains thirty

million different values. As the selectivity is very low, estimating a selectivity close to zero

is a reasonable estimate. With an increasing sample size, tuples in the sample start matching

the evaluation queries, however, scaling the result on the sample to the entire dataset causes

overestimations. We see Postgres and KDE delivering very similar estimation quality for both
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(a) Estimation quality for query IMDb QB.1
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(b) Estimation quality for query IMDb QB.2

Figure 4.2: Estimation quality for query set IMDb QB covering selections on base tables

queries. The bandwidth selector chose to neglect the values in sample for the movie_id attribute,

as the estimation error of KDE does not improve with the model size. As we have discussed

in Section 3.6, the behavior of KDE is close to the uniformity and independence assumption in

case an attribute is not skewed and the number of distinct elements exceeds the sample size

by far. It appears that the estimates provided by Postgres are very close to a uniform distribu-

tion for movie_keyword, which explains the similar estimation quality in IMDb QB.1. For IMDb

QB.2, both estimators seem to have a similarly accurate model of the distribution of role_id as

well. As KDE is unable to consider attribute dependencies for the evaluated sample sizes, the

observed estimation errors are very close.

We conducted a similar experiment using a relation z1 that is an instance of Zipf(1.04) with

query set Zipf QA: In the first query, we select on attribute c1 In the remaining two queries, we

add the partially dependent columns c2 and c3 to the selection.

Zipf QA.1: A single selection on attribute c1 which has the highest skew in the data distribu-

tion.

select * from z11 where c1 = $x

Zipf QA.2: We add the partial dependent column c2 to the selection.

select * from z11 where c1 = $x and c2 = $y

Zipf QA.3: We add the partially dependent column c3 to the selection.

select * from z11 where c1 = $x and c2 = $y and c3 = $z

The results are shown in Figure 4.3. For Zipf QA.1, we find Postgres providing superior

estimates. Column c1 was generated from a Zipfian distribution. Thus, it contains a lot of

values that occur once or twice, which are handled very well by a histogram, and few more

frequent values, which are handled by maintaining the frequencies of most common values.

However, the performance of Postgres deteriorates when dependent attributes are included. We
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(a) Estimation quality for query Zipf QA.1
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(b) Estimation quality for query Zipf QA.2
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(c) Estimation quality for query Zipf QA.3

Figure 4.3: Estimation quality for query set Zipf QA covering selections on base tables

find KDE providing better estimates than Sample in all queries, in particular for small model

sizes. This is due to the estimators ability to provide estimates for values that are not or only

partially included in the sample as especially c2 and c3 contain a lot of distinct values.

The previous experiments give us two insights: First, the estimates provided by Postgres are

not always inferior to Sample and KDE. In particular, Postgres provides reasonable estimates for

selections on a single-attribute and selections with a very low selectivity. Second, KDE always

provides significantly better or similar estimates when compared to Sample.

4.2.2 Joins

In this Section we cover queries including joins and selections. We evaluate queries including

two-way joins and three-way joins. Furthermore, we investigate the effect of conflicting band-

width values for joins and selections due to the assumption of equal value domains on join

attributes.
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4.2.2.1 Two-Way Joins

First, we evaluate the performance of our estimator on the IMDb dataset. We use query set

IMDb QC containing the following queries:

IMDb QC.1: All entries in the title table with a given type and associated with a given keyword.

select * from movie_keyword,title where

movie_keyword.movie_id = title.id

and movie_keyword.keyword_id = $x

and title.kind_id = $y

IMDb QC.2: All cast members that had a given role in a movie with a given keyword.

select * from movie_keyword,cast_info where

movie_keyword.movie_id = cast_info.movie_id

and movie_keyword.keyword_id = $x

and cast_info.role_id = $y

IMDb QC.3: All companies of a given type operating in a given country.

select * from movie_companies,company_name where

movie_companies.company_id = company_name.id

and movie_companies.company_type_id = $x

and company_name.country_code = $y

IMDb QC.4: All cast members that have played a given role in movies from a given year.

select * from cast_info,title where

cast_info.movie_id = title.id

and cast_info.role_id = $x

and title.production_year = $y

IMDb QC.1 and IMDb QC.2 strongly violate the assumptions of JoinKDE as the movie_keyword
table contains less than 20% of the keys contained in cast_info or title. The assumption does

hold for IMDb QC.3 and is mildly violated for IMDb QC.4 with a value containment of 90%.

Figure 4.4 shows the error plots for the given queries. KDE clearly outperforms all other

estimators and shows a good scaling behavior with the model size. This is expected behavior

as we bypass the problems of independent samples by directly sampling from the join result.

AGMS can barely compete with any of the other estimation techniques. JoinKDE outperforms

Sample - especially for small model sizes. Interestingly, while the estimation quality of Sample
improves with increasing sample size, JoinKDE only shows clear improvements for model sizes

32768 and larger. As JoinKDE clearly outperforms Sample for small model sizes, a significant

amount of the estimation comes from kernels distributing probability mass on values not in

the sample. Thus, increasing the sample size does not necessarily lead to better estimates for

JoinKDE.
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(a) Estimation quality for query IMDb QC.1
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(b) Estimation quality for query IMDb QC.2
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(c) Estimation quality for query IMDb QC.3
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(d) Estimation quality for query IMDb QC.4

Figure 4.4: Estimation quality for query set IMDb QC covering 2-way joins subject to selections

When comparing Join KDE to Postgres, we notice that the estimates are comparable for smaller

sample sizes. While JoinKDE may have accurate estimates on the selection attributes, we join on

large tables and attributes that are either surrogate keys or foreign keys to such attributes that

are barely skewed. This leads to low probabilities for having a particular join key in the sam-

ples. The error-driven bandwidth selector should pick a value close to one on these attributes,

which leaves the estimator with a close to uniform distribution for the join attribute. Whenever

a key is not included in the sample, the estimate is computed by multiplying the per attribute

selectivities which is equivalent to making an independence assumption. As these are the as-

sumptions made by Postgres, it is not surprising that the estimates only improve significantly

for sufficiently sample sizes.

We further investigate the effect of skew in the join attributes as well as dependence between

the join and selection attribute by using the artificial Zipf dataset. We use two tables z11 and

z12, each being an instance of Zip f (1.04), as well as two tables z21 and z22, each being an

instance of of Zip f (1.005). Note that a higher Zipfian parameter results in more skew in the

dataset. We use these tables to create query set Zipf QB:
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Zipf QB.1: Join the tables with higher skew on attribute c1 and select on the highly dependent

attribute c2.

select * from z11,z12 where

z11.c1 = z12.c1

and z11.c2 = $x

and z12.c2 = $y

Zipf QB.2: Join the tables with higher skew on attribute c1 and select on the less dependent

attribute c4.

select * from z11,z12 where

z11.c1 = z12.c1

and z11.c4 = $x

and z12.c4 = $y

Zipf QB.3: Join the tables with lower skew on attribute c1 and select on the highly dependent

attribute c2.

select * from z21,z12 where

z21.c1 = z22.c1

and z21.c2 = $x

and z22.c2 = $y

Zipf QB.4: Join the tables with lower skew on attribute c1 and select on the less dependent

attribute c4.

select * from z21,22 where

z21.c1 = z22.c1

and z21.c4 = $x

and z22.c4 = $y

These queries are close to self-joins as they are distributed very similarly. As for the previous

query set, KDE clearly dominates for almost all combinations of queries and model sizes. First,

we notice that Postgres is much more competitive for the queries selecting on the less dependent

attribute c4 (Zipf QB.2 and Zipf QB.4), which is explained by the independence assumption.

Furthermore, Postgres is most competitive for Zipf QB.4, as the assumption of uniformity in

the join attribute is less violated by the smaller Zipf parameter. JoinKDE clearly outperforms

Sample for most model sizes in all queries. Interestingly, AGMS is very competitive for Zipf

QB.1 and Zipf QB.3. We see that the AGMS performs better for joins with large join results than

small join results, which is consistent to the observations of Rusu and Dobra [43].

For Zipf QB.3, we notice a significant improvement of the estimation quality for JoinKDE and

Sample for sample size 128 and higher. For Zipf QB.1, we see the same effect happening already

at sample size of 64. This shows that these estimators clearly favor relations with skew on the
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(a) Estimation quality for query Zipf QB.1
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(b) Estimation quality for query Zipf QB.2
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(c) Estimation quality for query Zipf QB.3
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(d) Estimation quality for query Zipf QB.4

Figure 4.5: Estimation quality for query set Zipf QB covering 2-way joins subject to selections

join attribute, as skew increases the chance of finding a join key in both samples.

4.2.2.2 Three-Way Joins

We performed similar experiments for three-way joins to evaluate the performance of our esti-

mator for an increasing number of joins.

We evaluated the estimators for two query sets on the IMDb dataset. We decided to exclude

AGMS from the evaluation on this dataset, as the sketch computation is unbearably slow for

the compared model sizes and the large IMDb relations. Furthermore, we decided to stop the

evaluation of model sizes at 219 = 524288 tuples, which is four times the number of tuples we

evaluated for two-way joins. The size corresponds to roughly 10% of the tuples in tables movie_-
keyword, title and person_info. It exceeds the number of tuples in company_name and corresponds

to 1% of tuples in cast_info.

Query set IMDb QD contains three-way join queries where every table contains exactly one

join attribute - so the JoinKDE estimator does not have to make an independence assumptions.
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(a) Estimation quality for query IMDb QD.1
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(b) Estimation quality for query IMDb QD.2

Figure 4.6: Estimation quality for query set IMDb QD covering 3-way joins subject to selections

IMDb QD.1: All cast members fulfilling a certain role in an opus from a given year that was

associated with a given keyword.

select * from title,movie_keyword,cast_info where

title.id = movie_keyword.movie_id

and title.id = cast_info.movie_id

and title.production_year = $x

and movie_keyword.keyword_id = $y

and cast_info.role_id = $z

IMDb QD.2: All movie companies of a given type that have produced titles in a given year

that were associated with a given keyword.

select * from title,movie_keyword,movie_companies where

title.id = movie_companies.movie_id

and title.id = cast_info.movie_id

and title.production_year = $x

and movie_keyword.keyword_id = $y

and movie_companies.company_type_id = $z

The results are given in Figure 4.6. We find KDE being the only estimator that can clearly

outperform the estimates provided by Postgres given large enough samples. Postgres and KDE
barely differ and provide estimates close to zero as their estimates do not differ significantly

from Sample for small model sizes. For both queries, the performance of Sample deteriorates

significantly with an increasing sample size - an effect that we already observed in our experi-

ments using query set IMDb QB. Due to error-driven bandwidth selection JoinKDE can avoid

the effect but fails to provide better estimates than Postgres - even though the maximum eval-

uated sample size is much larger than the model size required for two-way joins to see an

improvement. We observe the effect we predicted in the discussion of our estimator in Section

3.6: As we join over attributes that include a lot of different values and are not significantly
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(a) Estimation quality for query IMDb QE.1
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(b) Estimation quality for query IMDb QE.2

Figure 4.7: Estimation quality for query set IMDb QE covering 3-way joins subject to selections

skewed, Sample and JoinKDE both require very large samples to provide good performance for

three-way joins. However, JoinKDE is capable of falling back to estimates similar to Postgres
due to error-driven bandwidth optimization.

Query set IMDb QE includes three-way join queries where an intermediate table has two

join attributes. Thus, the JoinKDE estimator has to make an independence assumption to effi-

ciently compute an estimate as described in Section 3.5.

IMDb QE.1: Select companies of a given type that are located in given country and have been

associated with an opus from a given year.

select * from company_name,title,movie_companies where

company_name.id = movie_companies.company_id

and title.id = movie_companies.movie_id

and company_name.country_code_id = $x

and title.production_year = $y

and movie_companies.company_type_id = $z

IMDb QE.2: Select a given type of meta information for all cast member with a given role that

have worked with companies from a given country.

select * from movie_companies,person_info,cast_info where

movie_companies.movie_id = cast_info.movie_id

and person_info.person_id = cast_info.person_id

and movie_companies.company_type_id = $x

and person_info.info_type_id = $y

and cast_info.role_id = $z

Figure 4.7 gives the result for this query set. We stopped the evaluation on IMDb QE.1 at a

sample size of 262144, as the next power of two would have exceeded the size of the smallest

involved relation. KDE provides superior estimation results for all evaluated sample sizes. Like
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in the previous experiment, KDE and Postgres provide similar estimation results. Different to all

previous experiments, we find Sample outperforming JoinKDE, which is due to the introduced

independence assumption for the intermediate join table.

We extended our experiments on the Zipf dataset to three-way joins in query set Zipf QC.

We applied an additional join to the queries in Zipf QB by joining with a likewise constructed

table while maintaining the join and selection attribute used in the query. Figure 4.8 shows

the results. Considering Zipf QC.1 and Zipf QC.3, we find that even though another join was

introduced, JoinKDE and Sample do still provide significantly better estimates than Postgres.

Unlike the previous experiments for three-way joins, all tables are distributed very similarly.

Join keys that occurred frequently in the tables, occur even more frequently in the join result as

their frequency in the join result is given by the product of the individual frequencies. Thus,

these values make the majority of tuples in the join result and queried more frequently. As even

small samples are likely to include the most common values. Thus, Sample and KDE are able

to provide much better results compared to the IMDb query sets. Again, we find AGMS being

very competitive for these two queries, as the join results are large.

Zipf QC.2 and Zipf QC.4 show a different picture. For these queries AGMS provides inferior

estimates, while all other estimators perform similarly. As the selection attribute c4 does barely

dependent on the query attribute, there are many more possible combinations on the selection

attributes, which causes problems to all estimators using a sample.

While highlighting an interesting corner case of the estimator, Zipf QD is not representative

for a workload that occurs in real-world database system - much more are the queries on the

IMDb dataset. We therefore decided not to include further experiments using more than three

joins as the experiments on the IMDb dataset show that the required sample sizes would be

unreasonable.

4.2.3 Interference of Selections and Join Queries in Bandwidth Optimization

In Section 3.6, we suggested to maintain different bandwidth parameters for joins and selec-

tions, as the assumption of equal value sets on join attributes may change the bandwidth to

values that are suboptimal for selections. To show this effect, we extracted the samples of size

131072 and the bandwidth parameters used for the evaluation of IMDb QC.1. We selected this

query as it clearly violates the assumption of JoinKDE. Afterwards, we used the samples and

bandwidth parameters for selections on the movie_keyword table that cover the join attribute

and selection attribute. Figure 4.9 compares the estimation error for bandwidth values opti-

mized on the query workload to the bandwidth values optimized for IMDb QC.1. We see that

the provided estimates for the former are close to perfect, while the latter introduces squared
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(a) Estimation quality for query Zipf QC.1
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(c) Estimation quality for query Zipf QC.3
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Figure 4.8: Estimation quality for query set Zipf QC covering 3-way joins subject to selections

estimation errors worse by two orders of magnitude.

4.3 Execution Time
In this Section, we evaluate our estimator with respect to the execution time. We measured

the execution time of the JoinKDE and KDE estimator for IMDb QC.1 and varying model sizes.

The estimators were implemented as sequential C program. The execution environment was

a consumer system running Debian Stretch (testing) on an Intel Core i7-3820 processor and 16

GB of main memory. Due to the limited editing time for this thesis, a parallel implementation

on a GPU was out of scope. The programs read the required samples from disk and measure

the execution time for computing the estimate and the error-independent gradient factor for

100 queries. We performed 20 iterations of these measurements for every evaluated model size

and report the average execution time per query.

Figure 4.10 shows the measured execution times for model sizes increasing in powers of two.

Note that both axes are logarithmically scaled - the runtime axis with the logarithm of ten and

the size axis with the logarithm of two. We added a linear function as a visual aid. The plot

confirms that the execution time of both estimators increases linearly in the model size. The
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Figure 4.9: Estimation quality of the KDE estimator for selections on movie_keyword for a bandwidth
parameter optimized on the evaluation workload and IMDb QC.1

execution time of JoinKDE is roughly three times higher than KDE, which is explained by its

more involved computations and the two required passes over both samples.

 0.01

 0.1

 1

 10

 100

 1000

 256  1024  4096  16384  65536  262144

Av
er

ag
e 

ru
nt

im
e 

in
 m

s 
(lo

g-
sc

al
ed

)

Model size (log-scaled)

JoinKDE KDE Linear

Figure 4.10: Execution time of the JoinKDE and KDE estimator for varying model sizes on IMDb QC.1
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5 Conclusion

In this thesis we applied Kernel Density Estimators to the problem of join selectivity estimation.

Our approach is based on discrete Kernel Density Estimators, which can provide estimates for

the joint frequency distribution of discrete attributes in base tables. The models are constructed

from a random sample and the number of distinct values per attribute.

We demonstrated how these models can be used to estimate base table selectivities for se-

lections with conjunctive equality predicates and provided the gradient required to perform

error-driven hyperparameter optimization. Our evaluation confirms that a well-trained Kernel

Density Estimator model can provide significantly better estimates than naive query evaluation

on samples and does at worst provide the same results, as sample evaluation is part of the hy-

perparameter space of the estimator. Furthermore, Kernel Density Estimator models provided

good results in cases the assumptions made in database products like PostgreSQL introduce

large errors.

We demonstrated that these models can be applied to for selectivity estimation of two-way

equi-joins subject to selections with conjunctive equality predicates. We provided algorithms

for computing these selectivities and their error gradients based on two independent Kernel

Density Estimator models of the involved based tables. Moreover, we explained how the algo-

rithm can be adapted to multiple joins and sketched a parallel implementation targeting GPUs.

For two-way joins our experimental evaluation shows that well-trained Kernel Density Esti-

mator models are superior to query evaluation on samples as well, as the relationship between

the estimators is preserved in our algorithm. Moreover, they provided better results than the

AGMS Sketch for most experiments. Compared to the estimates provided by PostgreSQL,

we found our estimator providing superior estimates, given the sample size is chosen large

enough, and otherwise providing comparable estimates. The required sample size depends on

properties of the underlying dataset. It was shown on an artificial dataset that our estimator

favors skew inside the join attribute, while requiring larger samples on a real-world dataset,

where join keys were not significantly skewed or consisted of unique keys.

For three-way joins the benefits of our approach are less clear. The algorithm delivers ad-
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mirable estimation quality for experiments on the skewed artificial dataset, but was not able to

clearly outperform the simple estimates provided by PostgreSQL for reasonable sample sizes

on a real-world dataset. This shows that the estimator scales poorly with the number of joins in

realistic scenarios. As making the independence assumptions is required for the general case

of more than one join, our estimator could even be outperformed by sample evaluation, which

confirms that its usage for more than one join is limited.

In our evaluation, we saw that a Kernel Density Estimator model constructed from the join

result provided clearly superior estimates for almost all experiments. While these models are

more expensive to construct and hard to maintain under updates, they can be a solution for

joins where base table models fail to provide sufficient accuracy. Furthermore, it could be worth

exploring if targeting Kernel Density Estimators directly to a specific join by using correlated

[51] or end-biased samples [11] can reduce the required sample size.

There is one further aspect we did not cover in our evaluation but deserves further investiga-

tion: Discrete Kernel Density Estimators models are easily extended to mixed Kernel Density

Estimator models that combine the categorical and continuous kernel to provide estimates for

queries including range-selections on real-valued attributes as well as equality selections on

discrete attributes. Exploring the possibilities of these models could be an interesting future

research topic.
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