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• Task: Estimating selectivities for queries of queries of the form

• 1D statistics + Independence Assumption (IA) are commonly used in practice

• But IA is often violated in real-world data

• Potentially results in suboptimal query plans

• Lifting IA requires multidimensional statistics that are

• accurate

• efficiently computable

• easy to maintain and construct

• Prior approaches do not provide all these characteristics

• Generalization to n-way joins and selections on join predicate are covered in the paper

• Kernel Density Estimation (KDE)

• Multivariate probability density estimation

• Based on a uniform data sample

• Smoothing by centering kernel functions on sample points

• Smoothing controlled by bandwidth parameter

• KDE has been applied to range filters over base tables

• Good accuracy

• Hybrid between sampling and histograms

• Bandwidth selection based on query feedback

• Learning estimator

• Efficiently trainable and evaluable

• Suitable for GPU acceleration

• In this publication: Extension to joins that are subject to selections

• KDE model constructed from the join result
• Sampling from the join result
• Requires exact or a good estimate of the join size

• Joins: Handled implicitly by sampling
• Selections: Handled explicitly during estimation

• Estimates are computed by combining base table KDE models

• Joining the estimated distributions

• Joins: Handled explicitly during estimation

• Selections: Handled explicitly during estimation

• Naive implementation: Pass over the cross product of samples

• Pruning techniques are required

• The estimates are computed given the following equation (EQ1):

• Sum over cross product of samples with size and

• Invariant Contributions

• Contribution of each sample point w.r.t. selection predicate

• Depend on only one side of the cross product

• Cross Contribution

• Join-specific contribution

• Depends on both sides of the cross product

• Distance function between the values on join attributes

• Computes invariant contributions for every sample point
• Removes sample points with negligible contributions
• Reduces the number of input tuples to the cross product

• Computes cross contribution only for sufficiently close points
• For each sample point in Sample 1

a binary search locates sufficiently close tuples in Sample 2
• Join with range predicate instead of cross product

Very accurate estimates

Cheap model evaluation

Limited to one particular join

More expensive model construction and maintenance

Cheap model construction & maintenance

General model: Supports joins, base table selections

More expensive estimate computation

Sample Pruning Cross Pruning

• Baselines

• Postgres: 1D Statistics + Independence Assumption

• AGMS: Sketch-based approach

• Table/Join Sample: Uniform sample evaluation

• Correlated Sample: Nonuniform sample evaluation

• KDE-based estimators trained on 100 workload queries

• KDE-based estimators

... outperform plain samples for smaller models

... converge with plain samples for larger models

... outperform other baselines in most cases

• Setup
• GPU implementations of all estimators
• NVIDIA GTX 980
• OpenCL

• TS+KDE runtime increase is subquadratic
• Pruning techniques are effective

• Framework overhead dominates for smaller models
• Overhead for kernels can become significant

• Here: JS+KDE for sizes 0.064, 0.128

Estimation Quality Estimator Runtime

(DMV Q1 Uniform) (IMDB Q1 Distinct)


