
Estimating Join Selectivities using Bandwidth-Optimized
Kernel Density Model

M. Kiefer, M. Heimel, S. Breß, V. Markl

Table Model: Pruning Techniques

Evaluation

Problem & Motivation KDE for Selectivity Estimation

Method 1: Join Model Method 2: Table Model

Author Affiliations Funding

Source & Data on GitHub:
martinkiefer/join-kde

Contact:
martin.kiefer@tu-berlin.de

The work received funding through
the EU Horizon2020 project SAGE
(671500) and from the German
Ministry for Education and
Research as Berlin Big Data Center
BBDC (01IS14013A) and Software
Campus (01IS17052).

1. Dataset

3. Kernels 4. Estimate

2. Sample

Join
Sample

Sampling

KDE
Model

Estimate

Estimate

Parameters

Compute Cross Contribution
for sufficiently

close points

Parameters

Table
Sample

Sampling

KDE Model

Estimate

Parameters

Table
Sample

Sampling Sampling

KDE Model

Table
Sample

KDE Model

Step 1:
Compute invariant

contributions

Step 2:
Filter points with

insignificant
contributions

• Task: Estimating selectivities for queries of queries of the form

• 1D statistics + Independence Assumption (IA) are commonly used in practice

• But IA is often violated in real-world data

• Potentially results in suboptimal query plans

• Lifting IA requires multidimensional statistics that are

• accurate

• efficiently computable

• easy to maintain and construct

• Prior approaches do not provide all these characteristics

• Generalization to n-way joins and selections on join predicate are covered in the paper

• Kernel Density Estimation (KDE)

• Multivariate probability density estimation

• Based on a uniform data sample

• Smoothing by centering kernel functions on sample points

• Smoothing controlled by bandwidth parameter

• KDE has been applied to range filters over base tables

• Good accuracy

• Hybrid between sampling and histograms

• Bandwidth selection based on query feedback

• Learning estimator

• Efficiently trainable and evaluable

• Suitable for GPU acceleration

• In this publication: Extension to joins that are subject to selections

• KDE model constructed from the join result
• Sampling from the join result
• Requires exact or a good estimate of the join size

• Joins: Handled implicitly by sampling
• Selections: Handled explicitly during estimation

• Estimates are computed by combining base table KDE models

• Joining the estimated distributions

• Joins: Handled explicitly during estimation

• Selections: Handled explicitly during estimation

• Naive implementation: Pass over the cross product of samples

• Pruning techniques are required

• The estimates are computed given the following equation (EQ1):

• Sum over cross product of samples with size and

• Invariant Contributions

• Contribution of each sample point w.r.t. selection predicate

• Depend on only one side of the cross product

• Cross Contribution

• Join-specific contribution

• Depends on both sides of the cross product

• Distance function between the values on join attributes

• Computes invariant contributions for every sample point
• Removes sample points with negligible contributions
• Reduces the number of input tuples to the cross product

• Computes cross contribution only for sufficiently close points
• For each sample point in Sample 1

a binary search locates sufficiently close tuples in Sample 2
• Join with range predicate instead of cross product

Very accurate estimates

Cheap model evaluation

Limited to one particular join

More expensive model construction and maintenance

Cheap model construction & maintenance

General model: Supports joins, base table selections

More expensive estimate computation

Sample Pruning Cross Pruning

• Baselines

• Postgres: 1D Statistics + Independence Assumption

• AGMS: Sketch-based approach

• Table/Join Sample: Uniform sample evaluation

• Correlated Sample: Nonuniform sample evaluation

• KDE-based estimators trained on 100 workload queries

• KDE-based estimators

... outperform plain samples for smaller models

... converge with plain samples for larger models

... outperform other baselines in most cases

• Setup
• GPU implementations of all estimators
• NVIDIA GTX 980
• OpenCL

• TS+KDE runtime increase is subquadratic
• Pruning techniques are effective

• Framework overhead dominates for smaller models
• Overhead for kernels can become significant

• Here: JS+KDE for sizes 0.064, 0.128

Estimation Quality Estimator Runtime

(DMV Q1 Uniform) (IMDB Q1 Distinct)


