
Accelerating Approximate Data Analysis with
Parallel Processors

vorgelegt von
M. Sc.

Martin Kiefer
ORCID: 0000-0001-8662-4591

an der Fakultät IV — Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Prof. Dr. Begüm Demir, Technische Universität Berlin
Gutachter: Prof. Dr. Volker Markl, Technische Universität Berlin
Gutachter: Prof. Dr. Zsolt István, Technische Universität Darmstadt
Gutachter: Prof. Dr. Jens Teubner, Technische Universität Dortmund
Gutachterin: Prof. Dr. Eleni Tzirita Zacharatou, IT University of Copenhagen

Tag der wissenschaftlichen Aussprache: 2. Februar 2023

Berlin 2023

https://orcid.org/0000-0001-8662-4591

Acknowledgements

I want to express my deepest gratitude to the numerous individuals who have made
the completion of this Ph.D. thesis possible. Each person has contributed in their own
unique way, and their support has been invaluable.

First and foremost, I would like to express my profound gratitude to Volker, the head
of our group and my thesis advisor. His wisdom, mentorship, and unwavering belief in
me have been instrumental in shaping this thesis. Without him, there wouldn’t have
been a Ph.D. to pursue. I would also like to thank the entire committee, consisting of
Begüm, Volker, Eleni, Jens, and Zsolt, for their constructive feedback.

I am immensely grateful to my mentors, Max, Sebastian B., and Eleni, who have
been indispensable sources of support and knowledge. Their guidance, friendship, and
wisdom have helped me navigate the complexities of my research with confidence.

My heartfelt thanks go to my wife, Janine, and my son, Felix, who was born during
the course of my Ph.D. journey. Their love, patience, and understanding have been a
source of strength and inspiration, enabling me to persevere through the challenges of
research and thesis writing.

My deepest gratitude goes to my parents, Olga and Jakob, for their unwavering
support throughout my entire academic career. Their love and encouragement have
been a constant presence, even as I pursued my career far from home.

I am thankful for my friends, particularly Sebastian K. and Bastian, who have been
with me since the beginning of my academic journey. Special thanks to Sebastian K. are
due — for our countless discussions, invaluable feedback, and the occasional Gin Tonic.
I also extend my appreciation to Susi for her patience and understanding as she listened
to my endless musings over the years.

My colleagues, especially Alexander, Andreas, Clemens, Dimitirios, Felix N., Jonas,
Hary, Nils, Philipp, Ventura, and Viktor, have enriched my experience with discussions,
support, and constructive feedback. Their camaraderie has made this journey an
enjoyable and fulfilling one. I would like to thank Claudia, Melanie, Aman, and Lutz for
their instrumental role in the success of our projects and the functioning of our team.

Finally, I want to express my profound gratitude to my late grandparents, David and
Erna. Although we could not celebrate this accomplishment together, their memory will
forever be cherished in my heart.

i

Abstract

Approximate data analysis trades off accuracy for faster or cheaper results. Instead of
performing data analyses on the entire data, space-efficient summaries are constructed
and evaluated. Applications from various domains, such as databases, computational
biology, and machine learning, require accepting a loss in accuracy to gain the desired
throughput and response times with limited resources. Specialized parallel processors, such
as graphics processing units (GPUs) and field-programmable gate arrays (FPGAs), promise
substantial gains in the efficiency of approximate analyses. However, exploiting these
architectures is challenging as it requires considering an architecture’s properties and
explicitly designing and implementing for parallelism.

In this thesis, we investigate novel approaches to maintaining and evaluating data
summaries on parallel processors:

First, we propose kernel density models for GPU-accelerated join selectivity estimation in
relational databases. Our estimators do not require common error-prone assumptions
and typically provide higher accuracy than the state of the art. Furthermore, the
estimators fit the massively parallel computations supported by modern GPUs. In
contrast to central processing units (CPUs), our approach allows for larger model sizes
and more accurate estimates within the same time budget.

Second, we propose Scotch, a holistic approach to implementing FPGA-accelerated
sketching at the full rate of the interconnect. The framework generates hardware
descriptions for a broad class of sketches based on a common abstraction and domain-
specific language. Furthermore, Scotch automatically maximizes the sketch size to
boost accuracy. As these tasks commonly require an FPGA expert, Scotch makes
FPGA-accelerated sketching more accessible to software engineers.

Third, we propose an optimistic data-parallel architecture for FPGA-accelerated sketch
summary maintenance. We share resources among inputs instead of pessimistically
replicating all resources for every input. Thus, our optimistic architecture reduces the
resources required to achieve given throughput for applications that tolerate stalls in
processing due to resource congestion.

Overall, this thesis shows that specialized parallel processors can substantially
increase the efficiency of approximate data analysis while the entry barrier for using
them can be lowered substantially by systems and abstractions.

ii

Zusammenfassung

Approximative Datenanalyse ermöglicht es die Genauigkeit von Ergebnissen gegen
schnellere oder günstigere Berechnungen einzutauschen. Anstelle der Durchführung
von Datenanalysen auf der Gesamtheit der Daten, werden speichereffiziente Zusam-
menfassungen erzeugt und ausgewertet. Anwendungen aus diversen Bereichen, wie
Datenbanken, Bioinformatik und maschinellem Lernen, erfordern diesen Verlust von
Genauigkeit, um Anforderungen bezüglich Durchsatz und Antwortzeiten mit begren-
ztem Ressourcenaufwand zu erreichen. Der aktuelle Trend zu spezialisierten parallelen
Rechenarchitekturen wie Grafikprozessoren (GPUs) und Field-Programmable Gate Arrays
(FPGAs) verspricht diesen Austausch zusätzlich zu verbessern. Jedoch ist die Ver-
wendung dieser Architekturen nicht trivial, da sie es erfordert, die Eigenschaften der
verwendeten Architektur einzubeziehen und Parallelität explizit beim Entwurf und der
Implementierung zu berücksichtigen.

In dieser Arbeit werden Ansätze zur Erzeugung und Auswertung von Datenzusam-
menfassungen mit Hilfe paralleler Rechenarchitekturen vorgestellt:

Als Erstes stellen wir Kerndichtemodelle für GPU-beschleunigte Schätzung von Join-
selektivitäten in relationalen Datenbanken vor. Unsere Schätzer benötigen hierzu keine
der gängigen Annahmen und liefern bessere Ergebnisse als der Stand der Technik.
Darüber hinaus passen die Schätzer gut zu den von modernen GPUs unterstützten
massivparallelen Berechnungen, was im Vergleich zu Hauptprozessoren (CPUs) größere
Modelle und dadurch genauere Schätzungen im selben Zeitbudget ermöglicht.

Als Zweites stellen wir Scotch vor, einen holistischen Ansatz für die Implementierung
FPGA-beschleunigter Erzeugung von Sketchzusammenfassungen mit der vollen Rate
des verwendeten Interconnects. Das Framework generiert Hardwarebeschreibungen
für eine umfassende Klasse von Sketchingalgorithmen basierend auf einer gemein-
samen Abstraktion und einer entsprechenden domänenspezifischen Sprache. Darüber
hinaus maximiert Scotch die Größe der Sketchzusammenfassung automatisch, um
die Genauigkeit der Ergebnisse zu maximieren. Da diese Aufgaben üblicherweise
einen FPGA-Experten erfordern, macht Scotch das FPGA-beschleunigte Erzeugen von
Sketchzusammenfassungen zugänglicher für Softwareentwickler.

Als Drittes stellen wir eine optimistische Architektur für die FPGA-beschleunigte daten-
parallele Erzeugung von Sketchzusammenfassungen vor. Wir schlagen vor, Ressourcen

iii

zwischen parallelen Eingabewerten zu teilen, statt pessimistisch alle Ressourcen für jeden
Eingabewert zu replizieren. Unsere optimistische Architektur verringert den Verbrauch
von Ressourcen, um einen hohen Durchsatz über Datenparallelität zu erreichen, sofern
die Anwendung Unterbrechungen durch Überlastung von Ressourcen toleriert.

Insgesamt zeigt diese Arbeit, dass spezialisierte parallele Rechenarchitekturen die
Effizienz von approximierten Datenanalysen erheblich verbessern können und dass die
Eintrittsbarriere für ihre Nutzung durch geeignete Systeme und Abstraktionen gesenkt
werden kann.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Use Cases . 3
1.3 Research Challenges . 5
1.4 Contributions and Impact . 6
1.5 Thesis Outline . 8

2 Background 9
2.1 Approximate Data Analysis with Data Summaries 9

2.1.1 Kernel Density Estimation . 12
2.1.2 Sketches . 18

2.2 Parallel Processors . 22
2.2.1 Graphics Processing Unit (GPU) 23
2.2.2 Field-Programmable Gate Arrays 30

3 GPU-Accelerated KDE for Join Selectivity Estimation 38
3.1 Introduction . 38
3.2 The Join Estimation Problem . 40

3.2.1 Classic Join Estimation . 40
3.2.2 Sampling-based Join Estimation 40
3.2.3 The AGMS Sketch . 41

3.3 Bandwidth-Optimized KDE . 41
3.4 KDE-based Join Estimation . 42

3.4.1 Estimating from a Join Sample . 42
3.4.2 Combining Base Table Models . 42
3.4.3 Extending to Multiple Joins . 44

3.5 Efficiently Joining KDE Models . 45
3.5.1 Extending to Multiple Joins . 48

3.6 Bandwidth Optimization . 48
3.7 Evaluation . 49

3.7.1 Experimental Setup . 50

v

3.7.2 Estimation Quality . 52
3.7.3 Quality Impact of Model Size . 57
3.7.4 Performance Evaluation . 58

3.8 Conclusion . 64

4 Scotch: A Holistic Approach to FPGA-Accelerated Sketching 65
4.1 Introduction . 65
4.2 System Architecture . 67

4.2.1 Design Requirements . 67
4.2.2 Accelerator Design . 68
4.2.3 Scotch . 68

4.3 Sketch Specification . 69
4.3.1 Select-Update Model . 70
4.3.2 ScotchDSL . 72

4.4 RTL Generator . 74
4.4.1 Overview . 75
4.4.2 ScotchDSL Function Units . 76
4.4.3 State Memory . 77
4.4.4 Compute Unit . 78
4.4.5 State Transfer Controller . 80

4.5 Data Parallelism . 82
4.5.1 Replication . 83
4.5.2 Merged Updates for Column Sketches 83

4.6 Discussion . 84
4.7 Automated Tuning . 84
4.8 Evaluation . 86

4.8.1 Experimental Setup . 86
4.8.2 RTL Generator . 88
4.8.3 Automated Tuning . 90
4.8.4 Comparison to Hand-Written RTL 95

4.9 Related Work . 95
4.10 Conclusion . 96

5 Optimistic Data Parallelism for FPGA-Accelerated Sketching 97
5.1 Introduction . 97
5.2 Banked Sketching Architecture . 99

vi

5.2.1 Compute Unit Architecture . 100
5.2.2 Stall Rate . 100

5.3 Merging in the Dispatcher . 103
5.3.1 Map-Reduce Updates . 103
5.3.2 Vertical Merging . 105
5.3.3 Horizontal Merging . 106
5.3.4 Discussion . 107

5.4 Dispatcher Resource Utilization . 108
5.5 Limitations . 108
5.6 Application: Approximate Group-By on a Xilinx U250 Accelerator . . . 109

5.6.1 Sketch Ensemble . 110
5.6.2 Accelerator Architecture . 111

5.7 Evaluation . 112
5.7.1 Impact of Merging on Stall Rates 114
5.7.2 Resource Consumption . 117
5.7.3 Application . 121

5.8 Related Work . 124
5.9 Conclusion . 126

6 Conclusion 128
6.1 Outlook . 129

6.1.1 Future Work . 130

A Appendix: Derivations for KDE-based Join Selectivity Estimations 131
A.1 Gaussian Cross Contribution . 131

A.1.1 Cross Contribution . 131
A.1.2 Generalized Cross Contribution 132

A.2 Selections On Join Attributes . 134

List of Figures 135

List of Tables 139

List of Listings 140

Bibliography 141

vii

1
Introduction

Many applications favor faster response times over result correctness, as exact results
may be expensive or even infeasible to compute. For example, the query optimizer in
relational databases requires the result sizes of query operators before executing the
actual query to choose an efficient execution strategy [57, 135]. Thus, the optimizer
must resort to estimates. Approximate data analysis allows such applications to trade off
accuracy for faster or cheaper results [38, 58]. Instead of performing data analyses on
the entire data, space-efficient summaries are constructed and evaluated. Choosing a
favorable processor for constructing and evaluating summaries allows us to increase
performance or support larger, more accurate summaries within the same budget.

In this thesis, we propose novel techniques that combine approximate data analysis
with parallel processing hardware to (1) increase efficiency while (2) hiding the complexity
resulting from using a parallel processor.

1.1 Motivation

Approximate data analysis is an essential strategy for evaluating high volumes of
resting data and high-velocity data streams [38, 58]. While exact data analysis only
allows for trading off between performance and resources spent (e.g., server nodes,
energy consumption) on a one-dimensional axis, approximate analysis adds a dimension:
accuracy. We visualize this trade-off in Figure 1.1. By creating and evaluating summaries
in small space, approximate data analysis computes estimates for functions over the
entire data efficiently [38, 58].

1

Chapter 1. Introduction

Performance

Accuracy

Resources

Approximate Analysis
Exact Analysis

Figure 1.1: The trade-offs inherent to exact and approximate data analysis.
Approximate analysis introduces the opportunity to trade off accuracy for higher
performance and fewer resources spent.

While sacrificing accuracy to achieve higher performance or resource efficiency
may seem counter-intuitive, applications surrounding us tolerate and sometimes even
necessitate working with a loss in accuracy. For example, election polls estimate
results from random samples that are only practical to compute exactly at an actual
election. In computing, numerous applications of approximate data analysis exist:
Web browsers employ probabilistic filters to validate URLs against small bitmaps to
avoid shipping or exposing large blocklists [35]. Relational databases employ selectivity
estimation to compute result sizes of individual operators based on statistics before the
exact query executes [57, 135]. The estimates guide the query optimizer in finding
an optimal execution plan. Approximate query processing answers relational aggregate
queries with bounded error while offering interactive response times [1, 3, 26, 100].
Other notable examples include large-scale network analysis [49, 92, 154], machine
learning [99, 133, 169], and computational biology [139].

At the same time, the trend toward parallel processors offers new opportunities
for approximate data analysis. With clock frequencies limited by the power wall [13],
processor vendors turned towards parallel architectures to put the additional transistors
gained with the still-increasing transistor density to use. As a result, a heterogeneous
landscape of parallel processing hardware has emerged: Central processing units (CPUs)
employ multiple cores, simultaneous multi-threading, and vector instructions [8, 74].

2

Chapter 1. Introduction

Graphics processing units (GPUs) provide thousands of parallel hardware threads [8, 114].
Field-programmable gate arrays (FPGAs) allow for parallelism on the level of custom
circuits [81, 151]. While parallel processors offer new opportunities to speed up data
processing and analytics, employing them is not trivial: Algorithms, applications, and
the inherent benefits and drawbacks of the architecture have to match. Furthermore, such
processors expose parallelism to developers and require them to incorporate parallelism
in their software explicitly.

Combining approximate data analysis and parallel processors promises highly
efficient data analyses by further improving the trade-off between accuracy, performance,
and resources. Depending on the algorithms employed, creating and operating on a
summary can be a better fit for parallel processors than the exact analysis. Overall, we
can create summaries faster or cheaper to support larger data volumes, speed up the
evaluation to provide answers faster, or maintain larger summaries within the same
budget to boost accuracy. Additionally, choosing a favorable processor improves energy
efficiency [122]. Previous work has shown that approximation paired with fitting use
cases justify the overhead of parallel design and programming [32, 70, 72, 82, 150, 154].

In this thesis, we introduce novel techniques for approximate data processing that,
on the one hand, use parallel processors to improve efficiency while, on the other hand,
hiding complexity introduced by the parallel processor behind systems and abstractions.

1.2 Use Cases

As applications, algorithms, and parallel processors have to be matched individually,
this thesis covers two relevant use cases of approximate data analysis in which parallel
processors have a substantial impact:

Use Case 1: GPU-Accelerated Selectivity Estimation Selectivity estimates are at the
heart of query optimization in relational databases [57, 135]. As the optimizer has to
choose from numerous equivalent execution plans before executing a query, it requires
estimates on the result size of operators to assess the execution cost of candidate plans.
These estimates are crucial to assess the execution cost of candidate plans, as inaccurate
estimates can result in poor plans being chosen and consecutively lead to catastrophic
query execution times [98, 101]. However, database systems commonly compute
these selectivity estimates based on per-column summaries (e.g., most-common values,
histograms) while assuming statistical independence of columns. While this enables
quick estimates and avoids the cost of maintaining and evaluating multi-dimensional
statistics, the independence assumption rarely holds for real-world data [97].

3

Chapter 1. Introduction

Heimel et al. have shown that GPU-accelerated kernel density estimation (KDE) is a
promising technique to provide accurate selectivity estimates without the independence
assumption [70, 71]. The authors have shown that KDE models are cheap to construct
via sampling and can be optimized by learning from query feedback. The GPU serves as
a statistical coprocessor to evaluate, update, and train larger model sizes than would
have been possible on a CPU within the same time budget. The statistical coprocessor
is completely transparent for users of the database system as it operates as part of the
query optimizer. By improving plan quality via improved estimates, GPUs can not only
accelerate in-memory databases but also indirectly accelerate I/O-bound systems that
can not directly benefit from GPU-accelerated query execution.

While the approach has shown admirable results in terms of accuracy, the technique is
limited to range queries. In particular, the approach does not trivially extend to joins
which are among the most common operators in relational database systems, while
being notoriously hard to estimate [101].

Use Case 2: FPGA-Accelerated Sketching Sketches are a popular class of summaries
that can be constructed in limited memory and within a single pass over the input
data [38, 58]. These attributes make the summary particularly popular in streaming use
cases where data arrives at high rates and only preserving a history of data summaries
is feasible. Sketches have been successfully applied in various domains, including
machine learning [99], approximate query processing [37, 83, 157], large-scale network
analyses [133, 140, 141, 153, 154, 169], and computational biology [139].

These applications inherently require summarizing large amounts of data that is poten-
tially even in motion. We refer to this process as sketching. FPGAs have been identified
as a promising architecture for sketching at the high throughput demanded by the
applications [29, 92, 133, 139, 140, 141, 153, 154, 154, 169]. Embarrassingly parallel
computations, a homogeneous memory access pattern, and the ability to merge sum-
maries of the same size are a good match for custom circuits implemented on an FPGA.
Furthermore, the circuit-level implementations enabled by FPGAs can provide hard
guarantees on processing rates and consume at provide at least an order of magnitude
better performance per Watt than CPUs [81].

While FPGA-accelerated sketching promises high throughput and energy efficiency,
designing and implementing such accelerators is complex, incurs non-trivial trade-offs,
and requires an expert in hardware design.

4

Chapter 1. Introduction

Overall, the two use cases show that parallel processors can increase the efficiency
of approximate data analysis and benefit its applications. However, we have also
highlighted issues with the state of the art from which we derive the three research
challenges addressed in this thesis.

1.3 Research Challenges

In this thesis, we propose novel techniques advancing the state of the art in GPU-
accelerated kernel density estimation and FPGA-accelerated sketching. We tackle the
following research challenges:

Research Challenge 1: GPU-Accelerated Join Selectivity Estimation While Heimel et
al. have shown made the case for GPUs as statistical coprocessors for selections with
conjunctive range predicates [70], generalizing the approach to queries with arbitrary
equijoins subject to selections would drastically extend the applicability of the technique.
As joins are among the most common operators in databases and errors are known
to propagate exponentially in the number of joins [110], the join selectivity estimation
problem is crucial [101]. A naive approach that evaluates estimators for each value in
the join domain is infeasible as the join domain is potentially huge. In Chapter 3, we
show generalization techniques for KDE without iterating the join attribute domain or
simplifying assumptions commonly violated in real-world data. The approach allows
error-driven parameter optimization based on query feedback while benefiting from
GPU acceleration.

Research Challenge 2: Generating FPGA Accelerators for Sketching at Line Rate
While FPGAs have shown impressive throughput and energy efficiency for sketching
and other data processing tasks, developing an FPGA accelerator is more involved
than software programming: Without the services provided by software programming
languages, operating systems, and modern CPUs (e.g., memory management), designing,
implementing, and tuning FPGA-based sketching accelerators is a tedious and time-
consuming process that requires the skillset of an FPGA expert. At the same time, the
variety of algorithms and use cases warrants an abstraction that is more accessible to
the developers of algorithms and software systems. In Chapter 4, we propose Scotch, a
system that generates and optimizes FPGA accelerators for a broad class of sketching
algorithms automatically. We provide a convenient abstraction to specify sketching
algorithms in terms of user-defined functions, while a code generator does the heavy
lifting of implementing sketching functionality. An iterative algorithm tunes the sketch

5

Chapter 1. Introduction

towards the underlying FPGA automatically. Thus, Scotch simplifies integrating and
maintaining FPGA-based sketching accelerators in software systems. The accelerators
generated follow an architecture allowing for processing data at the full rate of the
interconnect, often referred to as line rate.

Research Challenge 3: Optimistic Data Parallelism for FPGA-Accelerated Sketching
As FPGAs are clocked at a few hundred Megahertz, sketching implementations must
exploit data parallelism for high throughput. Maintaining one replica of the sketch per
input value is easy to implement and necessary to guarantee processing at line rate. Thus,
virtually all previous work on high-throughput sketching follows this strategy [29, 89, 92].
We consider replication pessimistic as it provisions for the worst case and, thus, leaves
resources underutilized.

While sharing resources among inputs promises improved resource utilization, it also
requires non-trivial mechanisms for conflict resolution and potentially stalling the
architecture. In Chapter 5, we propose a viable optimistic sketching architecture that
shares resources while introducing techniques to avoid stalls due to resource conflicts.
Furthermore, we provide the theoretical framework to generate optimistic accelerators
for a broad class of sketching algorithms from user-defined functions. We also employ an
approximate query processing application to highlight that larger sketches are feasible
in an optimistic architecture, which translates to significantly improved accuracy.

Each research challenge has a corresponding publication given in the next section.

1.4 Contributions and Impact

During our research, we have made the following contributions.

Conference Papers. We have published the main contributions of this thesis in the
top-tier journal Proceedings of the VLDB Endowment (PVLDB):

• Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl: Estimating Join
Selectivities using Bandwidth-Optimized Kernel Density Models, in PVLDB, Volume 10,
Issue 13, 2085-2096, 2017.

• Martin Kiefer, Ilias Poulakis, Sebastian Breß, and Volker Markl: Scotch: Generating
FPGA-Accelerators for Sketching at Line Rate, in PVLDB, Volume 14, Issue 3, 281-293,
2021.

6

https://doi.org/10.14778/3151106.3151112
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.14778/3430915.3430919
https://doi.org/10.14778/3430915.3430919

Chapter 1. Introduction

• Martin Kiefer, Ilias Poulakis, Eleni Tzirita Zacharatou, Volker Markl: Optimistic
Data Parallelism for FPGA-Accelerated Sketching, in PVLDB, Volume 16, Issue 5,
1113-1125, 2023.

Open Source Contributions. We have released all projects that are part of this thesis
under Mozilla Public License 2.0:

• https://github.com/martinkiefer/join-kde. This repository contains our
OpenCL code generators for GPU-accelerated join size estimation using KDE [87].
Furthermore, it contains all datasets, baselines, and scripts to reproduce our
evaluation.

• https://github.com/martinkiefer/scotch. This repository contains our imple-
mentation of the Scotch [89] system for FPGA-accelerated sketching, including
RTL generator, automated tuning, and I/O templates. Furthermore, it contains all
baselines and scripts to reproduce our evaluation.

• https://github.com/martinkiefer/optimistic-sketching. This repository
contains the RTL generator with extensions required for optimistic FPGA-Accelerated
sketching. Furthermore, the repository integrates the generated sketching unit
with Xilinx Vitis to support a wide range of FPGA devices in a GPU-like accelerator.
Furthermore, it contains all datasets, simulators, baselines, and scripts to reproduce
our evaluation.

Additional Contributions. The work described in this thesis has inspired an additional
publication on approximate data analysis in distributed stream processing engines that
is not discussed in this thesis:

• Rudi Poepsel-Lemaitre, Martin Kiefer, Joscha von Hein and Jorge-Arnulfo Quiané-
Ruiz, Volker Markl: In the Land of Data Streams Where Synopses Are Missing, One
Framework to Bring Them All, in PVLDB, Volume 14, Issue 10, 1818-1831, 2021.

7

https://github.com/martinkiefer/join-kde
https://github.com/martinkiefer/scotch
https://github.com/martinkiefer/optimistic-sketching
https://doi.org/10.14778/3467861.3467871
https://doi.org/10.14778/3467861.3467871

Chapter 1. Introduction

1.5 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 establishes the background on approximate data analysis and parallel proces-
sors, focusing on summaries and architectures targeted in our work.

Chapter 3 generalizes GPU-Accelerated kernel density models for selectivity estimation
to select-project-join queries.

Chapter 4 introduces Scotch, a system to generate FPGA accelerators for sketching at
line rate without requiring an expert in hardware design and FPGAs.

Chapter 5 introduces an optimistic architecture for FPGA-accelerated data parallel
sketching that trades guaranteed processing rates for improved resource utilization.

Chapter 6 concludes our findings and suggests future research.

8

2
Background

As the rate at which humanity generates data and the volume of stored data increase
exponentially [142], techniques promising gains in speed and efficiency become more
crucial. In the following sections, we provide background on the orthogonal approaches
combined in this thesis:

Section 2.1 introduces the algorithmic approach by providing an overview of approxi-
mate data analysis based on data summaries. The section details the two main summaries
discussed in this thesis — kernel density estimation and sketches.

Section 2.2 introduces the hardware approach by providing an overview of specialized
parallel processors. The section discusses GPUs and FPGAs in detail, as they are the
target processors of the approaches introduced in this thesis.

2.1 Approximate Data Analysis with Data Summaries

Approximate data analysis reduces a given input data set to smaller summaries and
approximates functions over the input data based on them [38]. These estimates are
usually subject to errors due to the lossy nature of summarization. Sampling is a popular
and intuitive example of a summarization technique: Drawing and evaluating a random
subset allows estimating quantities that would be infeasible to obtain on the entire
population. However, estimating it via a random subset is sufficient. This approach is
well-known from market research and election forecasts.

9

Chapter 2. Background

In this thesis, we cover two applications of approximate data analysis in particular:
Approximate query processing computes approximate answers to relational aggregate
queries aiming for significantly lower response times [1, 3, 100]. It usually implies a
bounded estimation error. Selectivity estimation is a subproblem of query optimization
in relational databases [57, 120, 135]. The query optimizer requires estimates on the
result sizes of subsequent relational operators to assess the quality of logically equivalent
execution plans. In this sense, it can be seen as a subproblem of approximate query
processing. However, due to the time-critical nature of query optimization, methods
usually focus on providing fast and accurate answers in practice rather than theoretical
accuracy guarantees [21, 63, 70, 83, 135, 157].

An overview and common classification of summaries is given in [38]:

Samples are a representative subset of an overall population. The most common
technique is a simple random sample in which elements are drawn independently with
uniform probability. However, biased sampling techniques exist that sacrifice uniformity
and independence to boost accuracy for some applications [48, 56, 157].

Histograms contain summary statistics for groups, so-called buckets, of the original
population. Equi-width histograms are a popular representative: Instead of tracking
item frequencies individually, they store the number of items falling into equally wide
buckets spanning the data domain. Similarly, equi-depth histograms split the domain
into differently-sized buckets, ideally capturing the same number of observations.
Histograms are a well-known technique from data visualization [134]. More complex
histograms exist that vary in terms bucketization rules [21, 63, 84] — especially in the
multivariate case [21, 63].

Sketches are a recent technique that projects data onto a smaller domain by applying
random transformations on the input data via families of hash functions and random
seeds. Aggregations on top of such random values allow for estimating various quantities
ranging from the number of distinct values in a stream [92], value frequencies [39], and
complex relational queries [43, 83, 157]. As constructing sketches has a sublinear time
and storage complexity in the number of summarized elements, the technique is popular
in data stream processing [58].

Wavelets are a technique commonly used in signal and image processing. For example,
the JPEG-200 image compression standard uses wavelets for compression [138]. Wavelet-
based data summaries decompose the joint frequency distribution of the input data
set into a weighted sum of so-called wavelet functions. Contributions identified as

10

Chapter 2. Background

negligible according to their weight are dropped to reduce size. Wavelet summaries
support estimating the result of relational aggregate queries [25, 106].

While this classification is not exhaustive because it misses techniques such as quantile
summaries [58, 109], kernel density estimators [119, 126, 134], or probabilistic graphical
networks [59, 155, 156], it suffices to set the stage for the summaries used in the remainder
of this thesis.

Each data summary has individual properties that determine its applicability to a
given problem. In particular, the following aspects are crucial:

Summarization Process: Creating a particular summary comes with an individual space
and time complexity. In particular, summarization algorithms classify into multi-pass
and single-pass algorithms based on the number of passes over the input data required.
Single-pass summaries are particularly useful in streaming scenarios and for storage
mediums with a high random access latency, such as hard disk drives or tape.

Supported Quantities and Computations: Data summaries can provide estimates for
different quantities ranging from simple statistics, such as the frequency of values, to
aggregates over complex relational queries. The algorithms to compute these quantities
differ in their space and time complexity.

Accuracy: The accuracy of estimates derived from data summaries may vary depending
on data characteristics such as order or distribution. Commonly, data summaries provide
hard or probabilistic bounds on the error for estimated quantities.

All these aspects are affected by the size of the summary, e.g., the number of buckets
in a histogram or the size of sample. The summary size controls the trade-off between
accuracy and the effort to construct or evaluate the summary. As data summaries differ
in their proprieties and how they are affected by their size, selecting an appropriate
summary for a given application is a non-trivial task.

In the following, we will focus on the two classes of data summaries this thesis
builds upon. First, in Section 2.1.1, we will discuss kernel density estimation, which
can be considered a hybrid between histograms and sampling. Chapter 3 shows how
this technique enables feedback-optimized join selectivity estimation on GPUs. Then, in
Section 2.1.2, we discuss sketches. With the AGMS sketch, a sketch summary serves as a
baseline in Chapter 3. Chapters 4 and 5 discuss techniques to construct sketch summaries
efficiently on FPGAs with approximate query processing as an example application.

11

Chapter 2. Background

2 1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6
De

ns
ity

p(i)(x)
s

p(x)

Figure 2.1: Kernel density estimator (line) for a sample (markers on the x-axis.
The estimate is the sum of the individual contributions of kernels centered on
each sample point (dashed).

2.1.1 Kernel Density Estimation

Kernel density estimation (KDE) is a data-driven, non-parametric method to estimate
probability density functions [119, 126, 134]. We illustrate the technique for the univariate
case in Figure 2.1: Based on a simple random sample drawn from a potentially unknown
distribution, the estimate is the average of independent probability density functions,
so-called kernels, centered at each sample point. The bandwidth parameter denotes the
spread of the individual kernels and smoothes the distribution in the sample: A small
bandwidth concentrates probability mass in the vicinity of sample points, while an
increasing bandwidth spreads probability mass on larger regions around sample points.

Formally, based on a simple random sample S =
{︃
t⃗

(1)
, . . . , t⃗

(s)
}︃

of size s from a

d-dimensional distribution, multivariate KDE defines an estimator p̂
(︁
x⃗
)︁

: Rd
→ R that

assigns a probability density to each point x⃗ ∈ Rd:

p̂
(︁
x⃗
)︁
=

1
s

s∑︂
i=1

p̂(i)(︁x⃗)︁
=

1
s · |H|

s∑︂
i=1

K
(︃
H−1

[︃
t⃗

(i)
− x⃗

]︃)︃
(2.1)

12

Chapter 2. Background

The density p̂(i) denotes the individual contribution of each sample point to the
overall density. It consists of the kernel function K, which can be any symmetric
multivariate probability density, and the bandwidth H, which is a positive semi-definite
symmetric matrix. A common simplification restricts multivariate kernels to the product
of univariate kernels for each dimension.

p̂
(︁
x⃗
)︁
=

1
s

s∑︂
i=1

p̂(i)(︁x⃗)︁

=
1

s ·
∏︁d

j=1 h j

s∑︂
i=1

d∏︂
j=1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[︃
t⃗

(i)
− x⃗

]︃
h j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.2)

In this case, one bandwidth value h j per dimension is sufficient as product kernels
imply independence between dimensions. While product kernels impair estimation
quality, they drastically simplify computations and allow for closed-form derivatives
and integrals not available otherwise [70, 71, 134]. Note that independence in kernels
does not imply independence in the overall estimator.

The Epanechnikov, Gaussian, Uniform, and Biweight are popular kernels shown in
Figure 2.2. While the Epanechnikov kernel, a truncated second-order polynomial, is
optimal in terms of the mean squared integrated error (MISE) [47], the loss of efficiency
when choosing one of the other shown kernels is small [134]. Thus, kernel functions are
commonly chosen based on desirable properties, e.g., being continuously differentiable
or cheap to evaluate.

However, choosing the bandwidth is considered the most critical factor in minimizing
the estimation error with KDE [134]. Figure 2.3 illustrates this for the univariate case:
While the KDE model with h = 0.037 fits the target standard normal distribution well, a
poor choice of the bandwidth leads to a suboptimal estimate. An overly large bandwidth
(h = 2) results in an overly smooth distribution that is less reflective of the distribution in
the sample. An overly small bandwidth (h=0.05) results in a spiky density estimate that
overfits the distribution in the sample. The bandwidth selection problem is challenging.
Scott’s rule [134] is a popular rule-of-thumb solution to the bandwidth selection problem
and assumes a normal distribution:

ĥ
scott
j = s−

1
d+4 · σ̂ j (2.3)

13

Chapter 2. Background

2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

k(x)

(a) Rectangular, k(x) = 1
2 · 1|x|≤1

2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

k(x)

(b) Gaussian, k(x) = 1
√

2π
e−

1
2 x2
= N0,h2 (x)

2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

k(x)

(c) Epanechnikov, k(x) = 3
4 ·(1−x2) ·1|x|≤1

2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

k(x)

(d) Biweight, k(x) = 15
16 · (1 − x2)2

· 1|x|≤1

Figure 2.2: Popular kernel choices. 1 denotes the indicator function.

14

Chapter 2. Background

4 3 2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8
De

ns
ity

0, 1
KDE, h = 0.42
KDE, h = 2
KDE, h = 0.05

Figure 2.3: Kernel density estimates for a sample (markers on the x-axis) drawn
from a standard normal distribution. We show KDE estimators with a well-fitting
(h = 0.042, Scotts rule), underfitting (h = 2), and overfitting bandwidth (h = 0.05).

The variable σ̂ denotes the sample standard deviation. Scott’s rule contains three
intuitions for the bandwidth parameter: A large sample is more representative of the
generating distribution and, thus, requires less smoothing and, consequently, a smaller
bandwidth. Increasing dimensionality and variance in the data increases the need for
smoothing. As Scott’s rule is easy to compute, it can also introduce large errors for non-
normal distributions [134]. While more sophisticated methods provide significantly better
estimates, they are also more computationally expensive. Popular bandwidth selection
mechanisms employ cross-validation [15, 44, 131] or plug-in methods [137, 149, 160].

KDE as a Data Summary

KDE is not limited to approximating unknown probability densities. Using a sample
from a dataset turns the technique into a data summary approximating the underlying
distribution [63, 70, 71, 73]. By integrating the density estimate on a region, we can
estimate the share of data points in the region. A hyper-rectangular region corresponds
to a range query and translates to integrating each dimension of a product kernel
individually. For a relation R = (A1, . . . ,Ad), a range query Q = σc(R) has a selection
predicate c = l1 ≤ A1 ≤ u1 ∧ . . . ∧ ld ≤ Ad ≤ ud. Given a sample S of size s drawn from R,

15

Chapter 2. Background

we compute the estimate as follows:

|Q|

|R|
≈ p̂(c)

=
1
s

s∑︂
i=1

p̂(i)(c)

=
1
s

s∑︂
i=1

d∏︂
j=1

∫︂ u j

l j

1
h j

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[︃
t⃗

(i)
− x⃗

]︃
h j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dx j

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Gaussian: 1

2

(︃
er f

(︃
t⃗ (i)

−u
h
√

2

)︃
−er f

(︃
t⃗ (i)

−l
h
√

2

)︃)︃
(2.4)

Thus, given that the integral of the univariate kernel k computes efficiently, a KDE model
can provide estimates for range queries efficiently. For the Gaussian kernel used in our
work, the integral requires the error function that er f ships with virtually all standard
math libraries.

While evaluating the query on the underlying sample also yields an estimate of
the share of qualifying values, the additional smoothing applied by the kernel density
estimator helps to model data points not included in the sample. This smoothing
is similar to buckets in histograms summarizing a region of data. Optimizing this
bandwidth allows us to find an optimal balance between the data present in the sample
and assuming values in the vicinity of the sample points.

If used as a data summary, additional techniques exist beyond optimizing the MISE
solely based on the sample. In contrast to assuming an unknown density, the data
the sample originates from may be available for querying. Especially in the context
of selectivity estimation in relational databases, correct selectivities are available as a
side-product of query execution. Heimel et al. have shown that closed-form derivatives
exist for range queries and a Gaussian product kernel, enabling optimizing for the
estimation error directly [70]. When optimized over a set of representative queries or
query feedback collected in the execution engine of a database Q1, . . . ,Qn, the bandwidth
selection problem translates to the following optimization problem [70, 71]:

arg min
h⃗

n∑︂
i=1

L

(︄
|Qi|

|R|
, est(Qi, h⃗)

)︄
The function est denotes the estimate provided by a KDE model for a given query with
the given bandwidth; L denotes a loss function. This approach outperformed Scott’s rule

16

Chapter 2. Background

and cross-validation for the squared estimation error as L [70]. Furthermore, techniques
for error-based sample maintenance exist [70, 88].

Constructing a kernel density estimator requires drawing a simple random sample
of the input data and selecting the bandwidth. Drawing random samples is a well-
understood problem [116]: At worst, reservoir sampling yields a random sample in
a single pass over the input data [158]. The algorithm maintains a random sample
incrementally by replacing sample elements with new observations in a randomized
process. More efficient sampling schemes are available in relational databases as the
number of tuples or blocks is known, and random access based on randomly drawn
identifiers is possible [116]. Ideally, each tuple in the sample requires only one access to
the base relation. Furthermore, algorithms for updating random samples in the presence
of insertions, deletions, and updates to the original dataset exist [116, 117].

Computing the bandwidth using Scott’s rule is cheap as it requires a single scan over
the sample. If error-driven bandwidth optimization is applied based on gradient-based
optimization [70], the cost depends on the optimization algorithm: Online optimization
with stochastic gradient descent [14] requires only one evaluation of the estimator per
training query to compute the gradient, each being in O(s · d). Batch optimization
algorithms, e.g., MMA [145] or L-BFGS [113], require many evaluations and iterations
over the set of training queries but provide higher accuracy [70].

When used as a data summary without further assumptions on the input distribution,
kernel density estimation lacks error bounds. However, the underlying independent
sample is a data summary with probabilistic error bounds from the Chebyshev, Hoeffding,
and Chernoff bounds [38]. While these bounds can not be extended directly to KDE due
to the additional smoothing applied, a bandwidth close to zero is equivalent to sample
evaluation. Thus, assuming that the bandwidth was successfully optimized with an
according loss function, KDE provides at least as good results as the uniform sample it is
based on.

In Chapter 3, we propose new techniques to extend kernel density estimation to
the more general class of relational queries that contain conjunctive equality and range
predicates together with equijoins.

17

Chapter 2. Background

2.1.2 Sketches

The term sketch commonly denotes summaries for streaming data that exploit ran-
domization in the construction process by employing hash functions with desirable
statistical properties [38]. They have been successfully applied to various data-intensive
tasks such as selectivity estimation [157], heavy hitter and change detection [154], data
integration [170], and machine learning [99].

Unfortunately, the term appears in various other connotations and lacks a generally
agreed definition. However, the term linear sketch has an agreed definition [38] that we
will discuss here instead. While we establish and rely on a more general definition in
Chapters 4 and 5, linear sketches help showcase the desirable properties of sketching
algorithms we exploit in this work. Furthermore, we introduce AGMS, Count-Min, and
Fast-AGMS as representatives of linear sketches that appear as baselines and target
algorithms in the following chapters.

A linear sketch [38] is a linear transformation of the input data. Formally, given a
vector v⃗ ∈ Rk that contains the frequency or each of the n elements in the input domain,
a linear function M : Rk

→ Rm with k >> n describes the sketching procedure. This is
equivalent to matrix multiplication with a matrix M ∈ Rm×k. Accordingly, a linear sketch
s ∈ Rn is constructed as:

s⃗ =Mv⃗ (2.5)

The sketching algorithm determines the construction of M. Defining sketching as a
linear transformation helps us to highlight essential properties that also apply to the
more general class:

Mergeability [2]: Two sketch summaries s1⃗ and s2⃗ of the same size constructed over
distinct frequency vectors v1 and v2, can be combined into a single ketch summary of the
same size by addition as M(v1⃗ + v2⃗) =Mv1⃗ +Mv2⃗.

Single-Pass Summary Construction: Given that each appearance of an item in the
input data stream e has a corresponding frequency vector ve, we can construct a sketch
incrementally by applying M and merging, i.e., s⃗ := s⃗ +Mv⃗e. Thus, a single pass over the
input data suffices to construct a sketch summary.

Out-of-order processing: Following the previous argument, the order of updates is
irrelevant, as addition is commutative and associative.

Constant memory consumption: Given that the size of sketch k and the vector entries
are fixed, memory consumption is constant in the number of input elements. 1

18

Chapter 2. Background

(a) Count-Min (b) AGMS (c) Fast-AGMS

Figure 2.4: Three popular sketches referenced throughout this thesis.

Constant update time: As the only structure modified over time is the sketch itself
and, assuming entries have a fixed size, update times are independent of the number of
previously observed elements. 1

Combining single-pass summary construction and constant memory consumption
makes sketches particularly useful for stream processing. In addition, mergeability and
out-of-order processing allow for parallelization and creating a logical summary of the
union of multiple separate data streams.

However, the definition of a linear sketch in Equation 2.5 is not practical for imple-
mentation, given that v contains the full frequency distribution of the input data and
makes a data summary obsolete. Fortunately, to the best of our knowledge, the matrix
M is always sparse in practice and contains only one non-zero entry per column that is
determined at random. This property allows us to make updates to entries of the sketch
for each appearance of a new value individually by incrementing an entry selected by a
random hash function h : {0, k − 1} → {0,m − 1} with desirable statistical guarantees.

We will introduce the Count-Min, AGMS, and Fast-AGMS sketches with their
construction, estimated quantities, and accuracy guarantees in the following. Sketches
are zero-initialized in all cases. Figure 2.4 visualizes their construction.

Count-Min (CM): The Count-Min sketch [39] allows tracking upper bounds on value
frequencies for a stream of input items. Given a sketch s and hash-function h, the update
for an item t is s[h(t)] := s[h(t)] + 1. Intuitively, we are tracking the item frequencies of
hash values instead of the full domain of the data stream. The space required to track
frequencies reduces from k to n counters while accepting collisions in entries. Thus,
the vector entry s[h(t)] may not contain the actual frequency of t in the input data but

1Space and time complexity usually remain sublinear in the number of observed items when the sketch
size is viewed as a function of the accuracy.

19

Chapter 2. Background

potentially an upper bound due to hash collisions. To mitigate the effect of collisions, m
instances of the sketch are maintained with different hash functions hi resulting in a sketch
matrix S ∈ Rm×n with the update processing being with s[i, h(t)] := s[i, hi(t)] + 1 for every
i ∈ {0 . . .m − 1}. As s[i, h(t)] is an upper bound for every i, we can take the tightest upper
bound over all sketch instances. Thus, the estimate f̂ (t) of the frequency f (f) is given
as f (t) ≤ f (t)ˆ = mini∈{0...m−1}s[i, h(t)]. In addition to this hard guarantee, probabilistic
guarantees exist: Given hash functions hi from a family of pairwise independent hash
functions, Euler’s numbers e, and the total number of observations N, choosing m = ln(1

δ)
and n = e

ε yields f (t)ˆ ≤ f (t) + εN with probability at least 1 − δ [39].

The CM sketch also supports computing estimates on the self-join size or the join size by
multiplying matrix entries either with itself or with a second CM sketch with the same
size and hash functions [39]. With auxiliary structures, CM sketches provide estimates
for ranges of items without estimating the frequency of every individual value [39].

AGMS: The AGMS sketch [4, 5] allows for estimating self-join and join sizes. The
number of entries in the sketch vector is n = 1. Given independent random variable
Xt ∈ {+1,−1} with equal probability of taking either option, an update to the sketch s for
an input t applies s := s +Xt. Given input datasets A and B with corresponding sketches
s(A) and s(B), the product s(A) · s(B) yields an unbiased estimator Ĵ of the join size J:

E[Ĵ] = E[s(A) · s(B)]

= E

⎡⎢⎢⎢⎢⎢⎢⎣∑︂
i∈A

Xi ·
∑︂
j∈B

X j

⎤⎥⎥⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∑︂
(i, j)∈A×B

Xi · X j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

∑︂
(i, j)∈A×B,

i= j

E
[︂
Xi · X j

]︂
⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

=1

] +
∑︂

(i, j)∈A×B,
i≠ j

E
[︂
Xi · X j

]︂
⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

by independence =0

=
⃓⃓⃓⃓{︂(︁

i, j
)︁
|
(︁
i, j

)︁
∈ A × B, i = j

}︂⃓⃓⃓⃓
= |A ▷◁ B| = J

(2.6)

While pairwise independent random variables are sufficient to prove the estimator is
unbiased here, 4-wise random variables minimize estimator variance [127]. Materializing
random variables as a sequence of k random bits is an option. However, as k is
potentially large, it is more convenient to use a member of a family of hash functions

20

Chapter 2. Background

h̄ : {0 . . . k − 1} → {−1,+1}. In this case, we have s := s + h̄(t) for every input value t.

As a single AGMS sketch has high variance, it is essential to evaluate multiple instances
of the sketch. The original estimator assumes a matrix of m · n counters, each being an
independent instance of the sketch constructed over the entire data with a different hash
function hi, j [4, 5]. After multiplying counters, the combined estimate Ĵ is computed
by first taking the average in each of the n rows and then taking the median of
these averages. Picking m = 4 ln

(︂
1
δ

)︂
and n = 16

ϵ2
yields an estimate that guarantees

|J − Ĵ| ≤ ϵ
√
|A ▷◁ A||B ▷◁ B| with probability at least 1 − δ [58].

By carefully constructing sketches as the product of multiple random variables, the sketch
extends to joins over multiple relations. Moreover, as filters are equivalent to joining
with the set of values qualifying the selection, the AGMS sketch estimates the result size
of complex queries [43, 157]. However, estimator variance increases exponentially with
each additional join [157]. As each update affects all m · n sketches, AGMS is expensive
to construct.

Fast-AGMS (FAGMS): The Fast-AGMS sketch [37] reduces the number of updates
required compared to plain AGMS. Like the CM sketch, the sketch is a matrix s ∈ Rm×n,
and updates are scattered across each row by i by a hash function hi. However,
entries are updated with a hash function h̄i according to the AGMS update procedure.
Thus, compared to AGMS, the number of updates is reduced by a factor of n. The
estimated join size from two sketches sk(A) and sk(B) requires performing an element-
wise multiplication, adding the result for each row, and computing the median. The
sketch essentially has the same space-accuracy tradeoff as plain AGMS [37].

While this sketch is faster to evaluate and requires fewer hash functions for random
variable generation, it does not generalize to complex queries, as scattering with a hash
function h requires a common attribute. Izenov et al. proposed new techniques to close
this gap in selectivity estimation applications [83].

The independent hash functions h and h̄ are created by initializing generator schemes for
hash function families with random seeds. Throughout this thesis, we use the H3 scheme
to implement h as it (1) generates the required pairwise-independent hash functions and
(2) is cheap to evaluate and implement in hardware and software [123]. For the +1/ − 1
hash function ĥ, we use EH3 [50], which is a hashing scheme that efficiently generates
3-wise independent random variables while in practice providing at least as good results
as 4-wise independent scheme [128]. We provide the definitions for these schemes as
examples in Section 4.3.

21

Chapter 2. Background

2.2 Parallel Processors

Dennard scaling [42] predicted the speedups delivered by every new generation of
CPUs for three decades. Essentially, Dennard observed that, with every new generation
of transistors, (1) area and power consumption for transistors halves while (2) the
operating frequency increases by 40%. These improvements allowed CPU vendors to
fit twice as many transistors on a CPU within a fixed area and power budget, while
increased operating frequencies ensured faster processing of instructions. Thus, every
new generation of CPUs promised substantial speed-ups without requiring fundamental
changes to existing programs.

However, Dennard scaling ended as the ever-shrinking size of transistors did not
allow clock frequencies to scale exponentially due to physical limits and the resulting
increased power consumption and heat dissipation [12] — CPU manufacturers hit the
power wall around 2005 [13]. CPU vendors embraced parallelism as a new driver for
performance and invested transistors in multiple cores, simultaneous multithreading,
and vector processing [74]. However, exploiting this parallelism requires adapting
algorithms and programs to concurrency and understanding the underlying processing
architecture. C++ expert Herb Sutter summarized the new reality in a famous article in
Dr. Dobb’s Journal titled ’The free lunch is over.’ [144].

The end of Dennard’s scaling did not only cause CPU architectures to embrace
parallelism but also opened the door for specialized parallel processors with different
performance characteristics and programming models. Staying with Sutter’s metaphor,
the ’free lunch’ was over for software developers — and hardware manufacturers began
opening distinguished restaurants for the evergrowing performance hunger of paying
customers. In particular, the following specialized architectures established themselves
as alternatives to the well-known multi-core CPUs:

Graphics Processing Units (GPUs) are the most common specialized parallel processor
as they are included in virtually all desktop computers, laptops, and smartphones. While
formerly restricted to accelerating computer graphics tasks and communicating with
an output display, GPU vendors established the architecture as a processor for general-
purpose computations. Like a CPU, GPUs process instructions, but provide an order
of magnitude more parallel processors at the expense of cache sizes and single-thread
performance [8, 114].

Application-Specific Integrated Circuits (ASICs) are a more general approach to
parallel processing that employs custom integrated circuits for a given task [81, 151].

22

Chapter 2. Background

ASICs allow experts to solve specific problems more efficiently by allocating transistors
solely based on the task’s requirements. Parallelism on a circuit level allows (1) selecting
the degree of parallelism freely, (2) arbitrarily mixing data, pipeline, and task parallelism,
and (3) synchronization with little to no overhead. However, creating ASICs requires
long development cycles, substantial financial effort, and production in large quantities
to be economical [96]. Examples of ASICs include Oracles SPARC-M8 CPU that included
special-purpose data analytics accelerator units [40], Google’s Tensor Processing Units
for machine learning workloads [33], and ASICs for cryptocurrency mining [10].

Field-Programmable Gate Arrays (FPGAs) bridge the gap between ASICs and soft-
ware [81, 151]. FPGAs provide low-level logic, memory, and other resources on a
chip that are initialized and interconnected via software. FPGAs offer the benefits of
custom circuitry for a problem but avoid the high initial cost of ASIC production [81, 96].
Furthermore, FPGAs are reprogrammable, while ASICs are static once manufactured.
While FPGAs were primarily used for ASIC prototyping and enabling firmware updates
in the past [81], FPGA vendors nowadays provide devices that specifically target the
market of accelerated computing [77, 165].

The following sections elaborate on the architectures of the specialized parallel
processors essential to the next chapters. We provide an overview of their architectures,
introduce their programming models, and characterize fitting workloads. In Section 2.2.1,
we elaborate on GPUs. In Chapter 3, GPUs accelerate KDE-based join selectivity
estimation for relational databases. Furthermore, Chapters 4 and 5 compare against
a GPU as a baseline. Section 2.2.2 elaborates on FPGAs. Chapter 4 shows how
to implement and tune sketch summaries without expert involvement. Chapter 5
discusses an optimistic architecture for FPGA-accelerated sketching that improves
resource utilization.

2.2.1 Graphics Processing Unit (GPU)

Desktop computers traditionally used graphics processing units for graphics com-
putations and video output. In the mid-2000s, they were identified as a target for
homogeneous operations on floating-point vectors and matrices [114]. Finally, the archi-
tecture opened to general-purpose computations [114]. In the following, we will provide
an overview of the architecture, highlight the programming model and commonly used
primitives, and characterize workloads suiting the architecture.

GPU vendors and frameworks use different terminology for equivalent concepts. As
all experiments in this thesis are conducted on Nvidia GPUs, we use the terminology

23

Chapter 2. Background

Core Control
L1 Cache

Core Control
L1 Cache

Core Control
L1 Cache
Core Control

L1 Cache

L2 Cache L2 Cache

Core Control
L1 Cache
Core Control

L1 Cache

Core Control
L1 Cache
Core Control

L1 Cache

L3 Cache L2 Cache

CPU GPU

Figure 2.5: High-level architecture of CPUs and GPUs visualizing the provisioning
of transistors to compute resources (cores), control flow handling (control), and
cache levels. Figure adapted from [114].

from Nvidia’s Compute Unit Device Architecture (CUDA) [114] platform and programming
model throughout this thesis.

Architecture Overview

GPUs follow an architecture that favors the throughput of parallel computations over
single-thread performance. Figure 2.5 visualizes the difference in the architectures
of multicore CPUs and GPUs. GPUs invest a substantial amount of chip space into
cores 2 that execute instructions in parallel [114]. However, significantly fewer resources
are invested in caches and logic to handle and anticipate control flow. With their
dedicated control logic, CPU cores can execute different programs and commonly
include optimizations for single-thread performance, such as out-of-order processing of
instructions or branch prediction [74]. In contrast, multiple GPU cores share an instance
of control logic, form a streaming multiprocessor, and are designed to execute the same
program (Single Instruction, Multiple Threads / SIMT). Thus, the architecture favors
data parallelism, which applies the same operations to different data items.

GPUs serve as coprocessors in host systems operated by CPUs. Dedicated GPUs
are physically separate chips located on expansion cards with periphery (cooling, I/O,
external memory) [8]. Depending on whether the traditional purpose of graphics output
is still served or not, we refer to them as graphics cards or accelerators, respectively.
Such accelerators connect to the host system via an interconnect; usually, Peripheral
Component Interconnect Express (PCIe) [8, 114]. We show an example setup for a

2We are using the term core in the CUDA connotation. It corresponds to the term floating-point-units
and arithmetic-logic-units in CPU terminology.

24

Chapter 2. Background

high-end system with a GPU accelerator in Figure 2.6 and visualize the theoretical peak
bandwidth for the interconnect and memory. We use this system to highlight critical
properties of the architecture.

Most importantly, we see that the memory bandwidth of the High Bandwidth Memory
(HBM) used with the graphics card is 3.8 times higher than the DDR4 3 memory available
to the host. A memory bandwidth this high is required to avoid starvation of the vast
parallel compute resources due to data transfer from device memory. At the same time,
this memory is also more expensive, explaining the two orders of magnitude smaller
memory on the host accelerator. Programs only achieve the maximum device memory
bandwidth if memory accesses from multiple threads to contiguous memory locations
combine into a single large transaction. This technique is called memory coalescing and
emphasizes the architecture’s specialization on data parallelism. Besides the device
memory, each streaming multiprocessor provides tens to hundreds of Kilobytes of
dedicated on-chip memory that provides even higher bandwidth. This memory is
traditionally explicitly available to the program but may also partially or fully serve as a
cache in recent GPU architectures [114].

Another important observation is the rather small bandwidth of the PCIe interconnect
compared to the CPU (6.5x) and the GPU memory bandwidth (50x). This scarcity leads
to the data transfer bottleneck in which resources are underutilized as they wait for data
to arrive via the interconnect. The data transfer bottleneck restricts the use cases of
GPUs as it is futile to accelerate tasks on a GPU that can be processed faster than
interconnect bandwidth on a CPU. While faster interconnects such as NVlink [64] have
been specified and are already available, systems prone to the data transfer bottleneck
remain state-of-the-art until this day [102].

For completeness, we mention integrated GPUs located on the same chip as a CPU
and operating on the same main memory [8]. Main memory bandwidth replaces PCIe
as a potential bottleneck. Integrated GPUs provide fewer compute resources due to the
smaller memory bandwidth and scarce chip space shared with the CPU.

While CPUs use large caches, out-of-order execution, and speculative execution to
hide the latency of instructions and DRAM access of individual threads, GPUs approach
this primarily by switching between threads [159]: Each streaming multiprocessor
simultaneously executes warps consisting of 32 threads in lock-step on its streaming
multiprocessors. As these streaming multiprocessors provide sufficient resources, e.g.,
registers, and shared memory, to maintain the state of multiple warps, execution switches
to a ready warp if the current warp waits for computations or memory access. While this

3Double Data Rate 4 Synchronous Dynamic Random-Access Memory

25

Chapter 2. Background

......

...

...

......

...

...

......

...

...

......

...

...

......

...

...

...

108 Streaming Multiprocessors
(64 Scalar Cores each)

1555 GB/s

......

...

...

......

...

...

Host

CPU GPU

Graphics Card

DDR4 Memory
2 TB

2 CPUs
(64 Cores / 128 Threads each)

HBM2e Memory
40 GB

PCIe 4.0 x16

408 GB/s

31.5 GB/s

Figure 2.6: Data transfer bandwidths for server system with an AMD EPYC 7742
CPU and an Nvidia A100 GPU accelerator.

1 2 3 ...0
Threads

Block 0

1 2 3 ...0
Threads

Block 1
Grid

...

Figure 2.7: CUDA programming model. A kernel is executed on a grid consisting
of multiple blocks that, in turn, consist of multiple threads.

does not decrease the latency of individual threads, it increases the overall bandwidth
of performed computations. It also highlights the parallel nature of GPUs: Algorithms
must exploit the massive parallelism provided by the architecture to exploit it fully.

ExecutionModel

GPUs are programmed using frameworks such as CUDA [114], OpenCL [61], or
OneAPI [79]. These frameworks provide interfaces to transfer data and launch GPU
programs, so-called kernels, from the host computer. Furthermore, GPU frameworks
provide programming languages and compilers for kernels.

The size of a problem is given as a grid consisting of several blocks that, in turn,
consist of several threads. While all threads execute the same kernel, a thread can access
its position on the grid and, thus, have an individual state. Identifiers for blocks and
threads have up to three dimensions. Figure 2.7 shows a one-dimensional grid.

26

Chapter 2. Background

1 // Kernel executed on the GPU
2 __global__ void vector_add(double *a, double *b, double *c)
3 {
4 // Compute global id
5 int id = blockIdx.x * blockDim.x + threadIdx.x;
6 c[id] = a[id] + b[id];
7 }
8 ... // Boilerplate code omitted
9

10 // Host function executing the kernel on a GPU
11 vecAdd<<<2048, 64>>>(a, b, c);

Listing 2.1: Vector addition in CUDA

Vector addition is a straight-forward example to showcase the CUDA programming
model: The host and device code that computes c⃗ = a⃗ + b⃗ is given in Listing 2.1. First, it
contains the kernel prefixed with the __global keyword. It computes a global thread
id based on the block id, the dimensionality of the block, and the block-local thread id.
After that, it adds the id-th entry and assigns the result to the output array. Second, we
have the host call that launches the kernel on the GPU. It creates 2048 blocks consisting
of 64 threads each and provides input pointers to the kernel. Thus, the kernel adds
vectors with 2048 · 64 = 131072 entries.

As CUDA code is rather low-level, higher-level primitives describe data-parallel
operations on input data array [65, 67]. Figure 2.8 shows common primitives:

Map evaluates a function f on each input value in the buffer and writes it to an output
buffer. Formally, it sets out[i] := map(f (in[i])).

Scatter writes data from an input buffer to designated output buffer positions given in an
additional buffer. Formally, it sets out[o f f set[i]] := in[i]. Conditional scatter operations
only write the i-th input if the i-th entry in an additional buffer is non-zero.

Gather loads data from offsets given in an additional buffer. Formally, it computes
out[i] := in[o f f set[i]].

Reduce: The primitive aggregates all entries in the buffer based on an associative and
commutative function ⊕. Formally, it sets out[i] := ⊕iin[i].

Prefix Sum: The primitive subsequently evaluates an associative and commutative
function ⊕ on elements in an input buffer and writes the results to an output buffer.
Formally it sets out[i] := in[i] ⊕ out[i − 1], given out[i − 1] was set previously and out[0] is
set to a neutral element with respect to ⊕.

27

Chapter 2. Background

in

out

(a) Map

in
2 10 3

out

offset

(b) Scatter

in

2 10 3
out

offset

(c) Gather

in

out

5

15

12 7 0

(d) Reduce

out

in 5

0 5 7 8 15

12 7

(e) Prefix Sum

Figure 2.8: Data parallel primitives. Figure adapted from [69].

Libraries such as BoostCompute [147] 4 or Thrust [9] 5 provide optimized implementations
for these primitives and, thus, reduce development overhead.

Figure 2.9 shows a filter operation implemented with data-parallel primitive: (1) The
map primitive evaluates the filter predicate and encodes true as one and false as zero.
(2) A prefix sum using addition is applied to the truth vector to compute the position
of elements satisfying the predicate in an output buffer. (3) A conditional scatter reads
entries from the input buffer and writes them to the position computed according to
the prefix sum and conditioned on truth vector from the second step. Note that this
multi-step procedure is necessary as threads must not only evaluate the predicate but
also determine a position to write their results to.

Overall, we see that translating algorithms to the GPU programming model and
primitives is not straightforward: CUDA requires a developer to model parallelism
explicitly. While libraries provide convenient primitives, mapping a sequential algorithm
to such primitives is not always possible or the most efficient approach.

Characteristics

To conclude our introduction of GPUs, we devise characteristics of tasks that fit a GPU’s
specialized processing capabilities:

High Parallelism: GPUs require an abundance of parallel threads to achieve peak
performance. This abundance is crucial as scheduling ready warps during stalls not

4http://boostorg.github.io/compute/
5https://thrust.github.io/

28

http://boostorg.github.io/compute/

Chapter 2. Background

1
8

7
4
3

in

9

1
0

0
1
1

qualifies

0
map prefix sum

conditional
scatter

0
1

1
1
2

offset

1

1
4

out

3

Figure 2.9: A filter implemented with data parallel primitives.

only improves the utilization of compute resources but is also the main mechanism for
latency hiding.

Limited Branching: As threads are executed in lock-step and warps execute branches
sequentially, threads diverging into many alternative branches reduces the degree of
parallelism and, thus, reduces computational throughput.

Data Parallelism: As the GPU memory architecture needs coalesced memory accesses to
achieve peak device memory bandwidth and branch divergence induces a performance
penalty, data-parallel algorithms are favorable.

Limited synchronization: While thread synchronization on a block or grid level is
possible, it prevents threads from executing further and limits the number of threads
available for latency hiding. Thus, embarrassingly parallel tasks are ideal.

Floating point-intensive workloads: Originating from computer graphics workloads
and encouraged by the trend towards deep learning, GPUs are well-known for their
enormous floating point operation throughput. Recent devices provide floating point
operation throughput in the order of teraFLOPs (1012 floating-point operations per
second) [115]. Thus, compute-intensive floating-point-heavy workloads are a good
match for GPUs, e.g., numeric simulations or machine learning.

Primitive operations: If the task maps to data-parallel GPU primitives, optimized library
implementations from libraries are available that fully exploit the architecture.

Device Locality: In the presence of slow interconnects and the data transfer bottleneck,
excessive transfers between host and device memory diminish or even negate the benefits
of GPU acceleration. Hence, it is beneficial if data can reside on device memory, while
transfers to the host are rare and small.

29

Chapter 2. Background

These characteristics help identify workloads suitable for GPU acceleration. However,
they do not pose a list of necessary criteria for GPU acceleration: For example, relational
query processing is usually not floating-point heavy but can be accelerated using GPUs
in the absence of data transfer bottlenecks [16, 68, 71, 72, 102]. Neither is data locality
required for GPU acceleration if compute throughput is the bottleneck.

2.2.2 Field-Programmable Gate Arrays

Field-programmable gate arrays are an architecture that, on the one hand, allows for
creating custom circuits for a given task but, on the other hand, also allows changing these
circuits based on software. They provide uncommitted logic resources on a chip, so-called
gate arrays. A bitstream configures the device by initializing and connecting resources
after manufacturing, making the architecture field-programmable. In the following, we will
explore the FPGA architecture, which fundamentally differs from instruction processing
architectures such as CPUs and GPUs. We will provide an overview of the architecture,
discuss the programming model and development workflow, and characterize workloads
suitable for the architecture.

FPGA vendors use different terminology for equivalent concepts. As we evaluate
devices from multiple vendors, we use the vendor-independent terminology proposed
by Teubner and Woods throughout this thesis [151].

Overview

FPGAs achieve reprogrammability by providing the three fundamental ingredients
of electronic circuits in a reprogrammable fashion [151]: (1) Combinational logic, (2)
memory elements, and (3) connections. Furthermore, there are (4) auxiliary components.

Combinational Logic: Lookup tables (LUTs) are the key concept to implementing
reprogrammable logic. Table 2.1 shows LUTs that fully define the behavior of an XOR
gate and a half-adder by exhaustively providing the output of the logical function for
every input value. Figure 2.10 shows the FPGA realization of a lookup table: Four bits
of programmable static RAM (SRAM) contain the exhaustive list of output bits for the
2-input logical function. The two input bits are processed in a tree of multiplexers that
selects the SRAM cell corresponding to the input asserted. Recent FPGAs even support
up to 6-input LUTs [6, 78]. The implementation of logic based on these look-up tables
shows a notable difference compared to ASICs: While ASICs implement combinational
logic directly from cascades of 2-input gates 6, the field-programmability feature of

6commonly NAND gates, as required by the CMOS fabrication process

30

Chapter 2. Background

Table 2.1: Look-up tables for an XOR gate and a half-adder

XOR
in1 in2 out
0 0 0
0 1 1
1 0 1
1 1 0

Half-Adder
in1 in2 sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

SRAM Multiplexers

1

1

0 0
1

0
10

0
1

Figure 2.10: A two-input look-up table for an XOR operation

FPGAs comes at the expense of higher resource consumption for SRAM and multiplexing
logic. Thus, FPGAs require a larger chip area and longer signal paths for the same logic.

Memory: Memory on the FPGA is essential to construct sequential logic from combi-
natorial logic. Sequential logic does not merely depend on the input signals but may
also depend on a state stored in a memory element. On FPGAs, sequential logic is
typically synchronous, meaning that memory elements hold their output for a clock cycle
and change it at a clock edge. D-flip-flops provide this functionality by buffering LUT
outputs for a clock cycle. Figure 2.11 shows an elementary logic unit (ELU) consisting
of two LUTs with their accompanying D-flip-flops. An SRAM-controlled multiplexer
determines whether the output is returned unbuffered or buffered by the D-flip-flop.

Synchronous sequential logic built from LUTs and flip-flops has a significant advantage:
Timing analysis algorithms can validate that signals arrive at flip-flops within an
interval that guarantees correct operation. Furthermore, D-flip-flops allow for pipeline
parallelism in large combinatorial functions, which is the primary technique to avoid
long signal paths and, thus, enable higher operating frequencies.

31

Chapter 2. Background

Connections: LUTs and their accompanying D-flip-flops need to be connected to allow
for more complex logic that exceeds a single LUT. The carry logic shown in Figure 2.11
connects the two pairs of LUTs and Flipflops in the ELU. This carry logic provides an
efficient mechanism to implement certain functions with dependencies between LUTs,
e.g., adders and counters. Logical islands contain multiple ELUs and connect them for
longer chains of carry logic.

Furthermore, a switching matrix provides a general mechanism to establish connections
between ELUs across logical islands. Figure 2.12 shows a two-dimensional FPGA
layout containing logical islands and the switching matrix: Each wire crossing in the
switching matrix is a switch that establishes a connection if the corresponding SRAM
cell is set. Recent FPGA architectures have transitioned from a two-dimensional to a
three-dimensional FPGA layout that stacks multiple two-dimensional super logic regions
(SLRs) [6]. However, communication across SLRs is limited.

Auxiliary Components: Common functionality is implemented directly on the FPGA
fabric to save reprogrammable resources for user logic: While ELUs are sufficient to
implement small random access memory, Block RAM elements provide high-density
memory in the order of kilobytes. I/O blocks provide efficient implementations of
the physical layer of communication protocols. Some FPGA devices even provide
IEEE-compliant floating point units or an entire CPU.

FPGAs are very versatile, especially compared to GPUs: While GPUs exclusively
operate as coprocessors, the availability of FPGA boards with various supported I/O
connectors, FPGAs, and target domains invites applications besides on-chip or off-chip
coprocessing [81]: FPGAs are also capable of operating autonomously in the data path.

ProgrammingModel andWorkflow

Given that recent FPGAs provide millions of LUTs [6], it is infeasible to implement
a large logic design by manually initializing SRAM cells. Like ASICs, FPGA designs
are commonly specified using hardware description languages, such as VHDL or
Veriolog [151]. They provide the Register-Transfer-Level (RTL) abstraction that models
sequential logic as a flow of signals between registers. 7 Hardware definition languages
and RTL make describing complex designs more manageable and portable because they
abstract from the specifics of the target architecture.

7Registers are synchronous state elements and map to D-flip-flops on an FPGA.

32

Chapter 2. Background

Carry

D

Carry

D

Carry

D

Carry

D

LUT

LUT

Carry-Out

Carry-In

Input
Signals

Output
Signals

Figure 2.11: An elementary logic unit consisting of two LUTs, D-flip-flops, and
carry Logic. Figure adapted from [151].

Figure 2.12: A two-dimensional grid of logical islands (LIs) with switching
matrix. Black dots visualize optional connections controlled by SRAM cells. The
switching matrix routes LI inputs and outputs. Figure adapted from [151].

33

Chapter 2. Background

1 −− Standard includes for logic and arithmetic types
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5

6 −− The entity declaration: What goes in, what goes out
7 entity adder_full_unsigned is
8 port (
9 clk : in std_logic;

10 add1 : in std_logic_vector(31 downto 0);
11 add2 : in std_logic_vector(31 downto 0);
12 sum : out std_logic_vector(31 downto 0)
13);
14 end adder_full_unsigned;
15

16 −− Synchronous implementation of the process
17 architecture rtl_sync of adder_full_unsigned is
18 begin
19 process(clk) is
20 begin
21 if rising_edge(clk) then
22 sum <= std_logic_vector(unsigned(add1)+unsigned(add2));
23 end if;
24 end process;
25 end rtl_sync;

Listing 2.2: Synchronous 32-bit unsigned addition in VHDL

Listing 2.2 shows a synchronous unsigned addition implemented in VHDL. VHDL
centers around entities and their architecture. Similar to interfaces in object-oriented
programming, an entity declaration defines what input and output signals the entity
receives. In our case (Line 7-14), we have two input signals for the operands and one
output signal for the result. Furthermore, there is a clock signal for synchronization.
The following architecture definition (Line 17-24) establishes the relationship between
input and output signals. Line 21 contains the arithmetic: We assign unsigned arithmetic
semantics to the operands, perform the addition, and cast back to a plain logic vector.
The synchronous architecture obeys the clock signal by applying the assignment in
a process construct and is conditioned on the rising edge of the clock. The output is
buffered and only changes at the rising edge of each clock cycle. 8

Between RTL and a functioning FPGA implementation lies an elaborate process
performed by vendor-provided toolchains. In the following, we will introduce the
workflow in Xilinx Vivado consisting of two steps [167]:

8We recommend the publicly available book ’Free Range VHDL’ by Bryan Mealy and Fabrizio Taperro
as a primer on VHDL [22].

34

Chapter 2. Background

Step 1: Synthesis maps the technology-independent hardware description to a logical
representation consisting of primitives provided by the target FPGA. This translation
includes not only a mapping to LUTs, but also higher-level primitives such as adders,
multiplexers, or RAM.

Step 2: Implementation places the resources in physical locations on the FPGA and routes
them to establish connections. Timing analysis verifies that the implementation satisfies
all constraints to guarantee correct operations. In particular, timing analysis verifies that
signals do not change in a safety interval around the clock edge. A setup violation occurs
if the paths between registers are too long for the requested clock frequency. Signals
potentially arriving too early at a flip-flop constitute a hold violation. Finding a placement
and routing that satisfies all constraints is computationally intensive and dominates
the compile time. If the implementation step finds such a valid solution, it yields a
corresponding bitstream to initialize the SRAM cells of the FPGA accordingly.

Both steps incorporate constraints provided by the developer. In particular, the developer
has to assign global input and output signals to physical pins of the FPGA and set clock
frequencies according to the requirements of the application and the used I/O protocols.

The compilation process for FPGAs is notoriously slow compared to software -
mainly due to the implementation step [151]. While small designs may only take minutes
to compile, large designs on large FPGAs close to the capacity of the FPGA can take
hours to days. Furthermore, hardware development for a given problem is more tedious
because functionality commonly provided by the processor or operating system has to
be implemented manually or with low-level library modules (e.g., memory management,
I/O, or caching).

Besides RTL, FPGA vendors provide frameworks for high-level synthesis that translate
imperative code in C/C++-based languages to RTL for supported devices, e.g., Xilinx
Vitis [86] and OneAPI [76]. While HLS provides shorter time-to-product [29, 36] as it
provides familiar programming languages and standard functionality (e.g., I/O, software
interfaces), it is no silver bullet to translating efficient CPU and GPU code to FPGA
implementations. It still requires thinking about the generated RTL, pipelining, and
the target FPGA device: A developer must annotate code with FPGA-specific pragmas
that guide the translation process and severely impact the RTL generated and its
performance [36].

35

Chapter 2. Background

Characteristics

FPGAs offer many advantages of ASICs as they implement custom circuits with repro-
grammable resources. Development cycles on FPGAs are shorter, and creating a product
based on an FPGA does not require the high order quantities that make ASICs infeasible
for small quantities [81, 96]. Furthermore, reprogrammability also allows for updates,
while ASICs are static after production. However, these benefits come at the expense of
efficiency: Reprogrammable logic requires more transistors than simply implementing
the same functionality using transistors directly. This effect leads to three drawbacks
compared to ASICs: (1) More chip space is required for the same logic. (2) Power
consumption is higher as more transistors have to be powered for the same logic. (3)
The signal path between registers is longer; thus, maximum supported clock frequencies
are lower. While high-performance CPUs and GPUs support clock frequencies beyond
5 GHz, user-defined logic on recent FPGAs clocks at a few hundred MHz. Overall, the
key reasons to select an FPGA to approach a particular problem instead of ASICs are
reprogrammability and avoiding the high production quantities and long development
cycles required for economic ASIC production [81].

As custom hardware on FPGAs can be any circuit and the market for FPGA-based
accelerator devices is very diverse in terms of FPGAs and provided means of I/O and
off-chip memory, it is harder to narrow down applications that fit the architecture.
However, we highlight several properties in contrast to CPUs and GPUs that will be
relevant for this thesis:

Custom Parallelism: Custom hardware can freely implement mixtures of parallelism
strategies. While GPUs favor data parallelism with their SIMT processing model and
CPUs favor task parallelism with their optimization on single-thread performance,
FPGAs can be used to implement both arbitrarily. While CPUs and GPUs employ
pipeline parallelism by processing instructions in pipelines, FPGAs can build arbitrarily
deep pipelines. A program that requires numerous instructions to complete can become
a single processing pipeline on an FPGA. Such deep pipelines allow an FPGA to consume
one set of input values per clock cycle. Circuits operating in parallel naturally synchronize
on clocks, while synchronizing threads in software incurs overhead.

As CPUs and GPUs operate at an order of magnitude higher clock frequencies and
invest massive amounts of transistors in fast instruction processing and on-chip memory,
outperforming them using an FPGA in terms of computational throughput is challenging.
However, they can be ’outparallelized’ for many applications by aggressively investing
resources into task, data, and pipeline parallelism to make up for lower clock frequencies.

36

Chapter 2. Background

Hard Processing Guarantees: As FPGAs implement custom hardware, circuits can
provide hard guarantees on the processing rate of input data. For example, an FPGA
can implement hardware guaranteed to process data at a given rate. Such guarantees
are harder to give on systems with CPUs and GPUs as the operating system, processor
internals, and concurrent processes may affect the execution of a running program.

Energy Efficiency: Custom hardware allows implementing solely the hardware needed
to solve a problem. Thus, FPGAs often have an edge in terms of more than performance
per Watt [81, 122] as CPUs and GPUs are provisioned for general-purpose applications
and have to power unused logic.

Flexibility: FPGAs are available with various interconnects and target application
domains, ranging from embedded systems [125] over large-scale networks [111] to high-
performance computing [166]. Compared to GPUs, they can operate in a standalone
setup without an attached host computer or on the data path. Thus, using devices with
multiple or faster interconnects can avoid the data transfer bottleneck common to GPUs.

Non-Interactive Compile Times: Compiling RTL to an FPGA bitstream can take hours
to days and may even require several attempts if no valid placement and routing is
found. The long compile times prohibit use cases that require recompiling FPGA designs
interactively in a short time. For example, compiling a query execution plan to machine
code for each incoming query is a popular strategy for CPUs and GPUs in online
analytical processing [17, 112] that does not fit FPGAs. The entire circuit can change
its behavior based on runtime-provided inputs (e.g., using control signals, memory
initialization, or implementing instruction processing). However, this incurs a trade-off
between flexibility and resource consumption and requires careful design of applications.

Overall, we summarize that FPGAs are a powerful architecture that can provide high
performance and energy efficiency by implementing custom logic and exploiting circuit-
level parallelism. However, this comes at a high cost in terms of development and
compile times. Furthermore, designing and implementing hardware requires a different
skill set compared to software development, raising the entry barrier for the technology.

37

3
GPU-Accelerated KDE for Join Selectivity

Estimation

Join size estimation is one of the most crucial problems in relational query processing [101].
Estimates are commonly computed based on simple statistics and assumptions commonly
violated in practice. In this chapter, we propose estimators for join selectivities based on
GPU-accelerated kernel density models that do not require common assumptions. While
the technique has been successfully applied to selections over base tables, this work
constitutes an important generalization. It strengthens the case for GPUs as statistical
coprocessors as more accurate estimates can be computed in the same time budget. Thus,
we indirectly accelerate query processing by improving the statistics available to the
optimizer. At the same time, our approach remains viable in I/O-bound databases that
can not benefit from GPU-accelerated query execution directly.

This chapter is mainly based on our publication ’Estimating Join Selectivities using
Bandwidth-Optimized Kernel Density Models’ [87].

3.1 Introduction

In order to correctly predict the cost of candidate plans, the query optimizer of a relational
database engine requires accurate information about the result sizes of intermediate plan
operations [135]. The accuracy of these cardinality estimates has a direct impact on the
quality of the generated query plans. Incorrect estimates are known to cause unexpectedly
bad query performance [31, 80, 97, 103, 124]. In fact, due to the multiplicative nature of

38

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

joins, errors in these estimates typically propagate exponentially through larger query
plans [80]. This means that even small improvements can dramatically improve the
information quality that is available to the query optimizer [80, 97].

A particularly challenging problem is to accurately and consistently predict the
result size of joins [146]. The typical approach for this is to combine the information
from base table estimators under the assumptions of uniformity, independence, and
containment [146]. However, while easy to compute, this approach can cause severe
estimation errors if any of the underlying assumptions is violated [31]. Multiple
authors suggested specialized methods to tackle the join estimation problem, including
sampling [56, 66, 98, 157], graphical models [59, 155], and sketches [95, 129]. However,
none of them managed to manifest themselves as a generally viable solution, leaving the
problem as one of the major unsolved challenges in research on query optimization [101].

In prior work, Heimel et al. introduced bandwidth-optimized kernel density models
(KDE) as a way to compute multidimensional selectivity estimates. KDE is a data-driven,
non-parametric method to estimate probability densities from a data sample [134]. They
demonstrated that combining KDE with a query-driven tuning mechanism to pick the
so-called bandwidth parameter optimally yields an estimator that typically outperforms
the accuracy of state-of-the-art multidimensional histograms. Furthermore, the estimator
is easy to maintain and to parallelize on graphics processing units [70]. In this work,
we significantly expand upon their work and demonstrate how to estimate the result
size of queries spanning multiple equijoins and base table predicates from bandwidth-
optimized KDE models. In particular, we explain how to compute estimates from both
joint models and combined base table models. We present pruning methods to reduce
the computational overhead and demonstrate a mechanism to tune the bandwidth
parameter automatically. Based on an extensive experimental evaluation, we found
that our family of estimators matches and usually outperforms the accuracy of existing
state-of-the-art join estimators like correlated sampling [157] or the AGMS sketch [129].

In the following two sections, we provide background on the join estimation problem
and bandwidth-optimized KDE models. In Section 3.4, we lay the theoretical foundation
of our work, explaining how to estimate join selectivities from a KDE model. Section 3.5
introduces pruning techniques to reduce the computational overhead, and Section 3.6
discusses strategies to fine-tune the bandwidth parameter of these models. Finally,
Section 3.7 presents our experimental evaluation, and Section 3.8 concludes the chapter
by summarizing our findings.

39

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

3.2 The Join Estimation Problem

Given a set of n relations R1,R2, . . . ,Rn, and a query Q = σc1 (R1) ▷◁θ1

(︂
. . . ▷◁θn−1 σcn (Rn)

)︂
,

where σci denotes a selection with (local) predicate ci and ▷◁θi a join with join predicate
θi, our goal is to predict the fraction of tuples from the Cartesian Product R1 × . . . ×

Rn that fall into the query’s result. This join estimation problem is one of the classic
problems from query optimization research [101], and improving the quality of join
estimates has a direct and measurable impact on the plan quality produced by cost-based
optimizers [31, 80, 94, 97, 103, 124, 143]. We consider the important subproblem where
all joins are equijoins.

3.2.1 Classic Join Estimation

The classic way to estimate an equijoin between two tables R1 and R2 requires us to
know the number of distinct keys nR1.A1 and nR2.A1 in the corresponding join columns.
Assuming uniformity, each distinct key in Ri will appear |Ri|/nRi .A1 times. Further assuming
that the key domain from the table with fewer distinct keys is a subset of the other table’s
domain – the containment assumption –, and assuming that the local predicates c1 and c2

are independent of the join attribute, we arrive at the classic join estimation formula that
is used by most query optimizers [135, 146]:

⃓⃓⃓
σc1(R1) ▷◁ σc2(R2)

⃓⃓⃓
≈

⃓⃓⃓
σc1(R1)

⃓⃓⃓
·

⃓⃓⃓
σc2(R2)

⃓⃓⃓
max

(︂
nR1.A1 ,nR2.A1

)︂ (3.1)

While straightforward to derive and easy to compute, the underlying assumptions
make Equation (3.1) susceptible to several sources of estimation errors that can cause
substantially under- or overestimations of the join result size [80, 97, 146]. These
deficiencies have inspired several researchers to investigate more sophisticated methods
for estimating join result sizes. These methods can be broadly categorized into two
classes: While base table models dynamically combine the information from individual
estimators, joint models directly model the value distribution for preselected joins. Joint
models usually produce more accurate estimates but are less flexible and harder to
maintain than base table models.

3.2.2 Sampling-based Join Estimation

Sampling is a powerful tool to estimate selectivities for both individual and joined
query results. Creating and maintaining a random sample from database tables is a

40

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

well-understood topic [158], and we can directly produce estimates from base table
samples by evaluating the actual query on them [66, 116]. However, joining base table
samples has one major drawback: While it is an unbiased estimator to the selectivity, its
variance is very high for small sample sizes due to missing join partners in the sample.
While this problem can be mitigated using non-uniform methods like end-biased [48] or
correlated sampling [157], the created samples are targeted to predefined joins. Another
possibility is to build a joint model by sampling directly from the result of a particular
join. Sampling from a join result, and maintaining said sample under updates, deletions
and insertions, are well-understood problems and can be done efficiently in the presence
of join indexes [27, 116]. Such a join sample generally produces better estimates and
requires smaller sample sizes compared to evaluating the query based on base table
samples [66, 98]. Leis. et al. showed that estimates computed from join samples
significantly improve plan quality [98]. However, join samples are limited to queries
that use the same join from which the sample was drawn.

3.2.3 The AGMS Sketch

The AGMS sketch is a probabilistic data structure to estimate the join size between two
data streams [4, 5]. It extends to multiple joins and selections by representing them as a
join with all values matching the selection predicate [43, 157]. We discussed its basic
construction, estimation procedure, and properties in Section 2.1.2.

3.3 Bandwidth-Optimized KDE

We established the theoretical framework for KDE and its interpretation as a data
summary in Section 2.1.1. In prior work [70], Heimel et al. demonstrated how to
derive a selectivity estimator for multidimensional range queries based on KDE. They
also demonstrated how to select the estimator’s bandwidth parameter by numerically
minimizing the estimation error. For this, they plugged the gradient of KDE’s estimation
error with respect to its bandwidth into an off-the-shelf numerical solver. They continu-
ously fed this solver with training data obtained from user queries collected on-the-fly.
This query-driven tuning mechanism allowed them to outperform the accuracy of
state-of-the-art multidimensional histograms such as GenHist [62] or STHoles [21], while
still offering the flexibility and maintainability of a sample-based method. Furthermore,
Heimel et al. explained how the estimator is efficiently evaluated and maintained
on GPUs [70, 88] and, thus, identified an interesting use case for GPUs in relational
databases besides actual query execution [16, 72]: As relational query execution on GPUs

41

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

commonly suffers from data transfer bottlenecks, supplying more accurate statistics can
improve plan quality and, thus, indirectly speed-up query execution. In this scenario,
the GPU acts as a statistical coprocessor that maintains and evaluates more accurate KDE
models than could be evaluated on a CPU within the same time budget.

3.4 KDE-based Join Estimation

We will now discuss how to compute the result size of equijoin queries from KDE models.
In particular, we introduce two basic strategies: A joint model that works by building a
KDE estimator from a sample directly drawn from the join result, and a base table model
that works by dynamically combining multiple base table KDE models. By combining
base table models, we effectively join their estimated distributions and avoid the problem
of empty join results for naive sample evaluation.

3.4.1 Estimating from a Join Sample

The straightforward method to estimate joins based on KDE is to build the model from
a sample that we drew directly from the join result. Sampling data directly from a
join result is well-understood and can be efficiently implemented [116]. Since KDE is
inherently sample-based, this method allows us to build a KDE-based join estimator
without having to change a single line of code of the base table model. The advantages
and disadvantages of this approach are identical to naïve sample evaluation: While we
expect the joint model to produce very accurate estimates [66], it is less flexible than any
method that combines base table KDE models. In fact, while the latter model can provide
selectivity estimates for any arbitrary equijoin, the former requires us to construct and
maintain joint models for all potential joins in the query workload.

3.4.2 Combining Base TableModels

Let us now derive the estimation formula for computing join estimates from individual
base table models. To simplify this derivation, let us first consider the case of predicting
the result size of a two-way equijoin query with local predicates: Q = σc1 (R1) ▷◁R1.A1=R2.A1

σc2 (R2). We will later generalize this to multiple joins. For each individual join key ν, we
can express the number of result tuples produced for that key as:⃓⃓⃓

σ (R1)R1.A1=ν∧c1

⃓⃓⃓
·

⃓⃓⃓
σ (R2)R2.A1=ν∧c2

⃓⃓⃓
=

|R1| · p1 (R1.A1 = ν ∧ c1) · |R2| · p2 (R2.A1 = ν ∧ c2) (3.2)

42

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

In this equation, the function pi (c) denotes the exact base table selectivity for a predicate
c on table Ri. We can now define the join selectivity J (Q) = |Q|/|R1|·|R2| by summing
Equation (3.2) over all keys ν ∈ A, where A is the join domain, which is the set of distinct
join keys. Note that A can be reduced to a subset of the distinct keys in the join columns
due to local table predicates:

J (Q) =
∑︂
ν∈A

p1 (A1 = ν ∧ c1) · p2 (A1 = ν ∧ c2) (3.3)

We replace p1 and p2 by our base table estimators p̂1 and p̂2, and arrive at the join
selectivity estimator Ĵ (Q):

Ĵ (Q) =
∑︂
ν∈A

p̂1 (A1 = ν ∧ c1) · p̂2 (A1 = ν ∧ c2) (3.4)

Substituting the definition of a KDE estimator from Equation (2.4), we find that both
estimators are evaluated and their results are multiplied. By distributivity, we can
compute and multiply the individual contributions for all combinations of sample points
in their respective samples S1 and S2, and sum over the products.

Ĵ (Q) =
1

s1 · s2

∑︂
ν∈A

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ s1∑︂

i=1

p̂(i)
1 (A1 = ν ∧ c1)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ s2∑︂

j=1

p̂(j)
2 (A1 = ν ∧ c2)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

=
1

s1 · s2

∑︂
ν∈A

s1,s2∑︂
i=1
j=1

p̂(i)
1 (A1 = ν ∧ c1) · p̂(j)

2 (A1 = ν ∧ c2)
(3.5)

Assuming that the kernel functions used by our KDE models are product kernels [134],
the following identity holds: p̂(i) (A1 = ν ∧ c) = p̂(i) (A1 = ν) · p̂(i) (c). Substituting this into
Equation (3.5) allows us to isolate the join-specific parts of the computation:

43

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

Ĵ (Q) =
1

s1 · s2

∑︂
ν∈A

s1,s2∑︂
i=1
j=1

p̂(i)
1 (c1) · p̂(i)

1 (A1 = ν) · p̂(j)
2 (c2) · p̂(j)

2 (A1 = ν)

=
1

s1 · s2

s1,s2∑︂
i=1
j=1

p̂(i)
1 (c1) · p̂(j)

2 (c2) ·

⎛⎜⎜⎜⎜⎜⎝∑︂
ν∈A

p̂(i)
1 (A1 = ν) · p̂(j)

2 (A1 = ν)

⎞⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Ĵi, j

(3.6)

We refer to Ĵi, j as the cross contribution. Naively computing the cross contribution in a
selectivity estimation scenario is infeasible, as the join key domain A is potentially huge
and generally unknown at query optimization time. Instead, we have to exploit the
properties of kernels to avoid explicitly summing over the entire join domain. Equation
(3.7) — which is derived in Appendix A.1 —, provides a closed-form approximation to
the cross contribution for a Gaussian kernel on integer attributes. The Gaussian kernel is
a common choice for KDE-based estimators and is used in our experimental evaluation.

Ĵi, j ≈ Nt(i)
1 ,(δ2

1+δ
2
2)

(︂
t(j)
2

)︂
(3.7)

In this equation, Nµ,σ2 denotes the probability density function for a standard normal
distribution with mean µ and variance σ2, t(i)

1 denotes the i-th sample point from R1.A1,
and δ1 denotes the join estimator bandwidth for R1.

3.4.3 Extending toMultiple Joins

In order to generalize our approach to multiple joins, we need to introduce the notion of
equivalence classes. For two tables Ri and R j that join on the attributes Ri.Al and R j.Am,
we consider the pair of attributes equivalent Ri.Al ∼ R j.Am. Note that, by definition, this
equivalence also holds transitively. We denote the equivalence class for a given attribute
R j.Am byΨ

(︂
R j.Am

)︂
. Each equivalence class contains a set of attributes that have to be

equal for all tuples in the join result. Based on this definition, we can now discuss how
the cross contribution can be generalized to equivalence classes containing more than
two relations and how we can compute the join selectivity for an arbitrary number of
equivalence classes.

First, we consider the case of joins consisting of a single equivalence classΨ (R1.A1)
containing n relations. Since all join attributes are in the same equivalence class, we

44

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1 # 1) Apply sample pruning:
2 S1 = S1 \

{︂
t(i)
1 ∈ S1

⃓⃓⃓
p(i)

1 (c1) < θ
}︂

3 S2 = S2 \
{︂
t(i)
2 ∈ S2

⃓⃓⃓
p(i)

2 (c2) < θ
}︂

4

5 # 2) Sort S2 by the join key (if necessary)
6 S2 = sort(S2,S2.A1)
7

8 # 3) Apply Cross Pruning and estimate selectivity:
9 for i in {1, ..., s1}:

10 j = binarySearch
(︂
t(i)
1 − maxdiff (δ1, δ2) ,S2

)︂
11 while

⃓⃓⃓⃓
t(i)
1 − t(j)

2

⃓⃓⃓⃓
≤ maxdiff (δ1, δ2) ∧ j ≤ s2:

12 Ĵ = computeĴ
(︂
t(i)
1 , t

(j)
2 , δ1, δ2

)︂
13 e += p̂(i)

1 (c1) · Ĵ · p̂(j)
2 (c2)

14 return e/s1·s2

Listing 3.1: Combining base table KDE models

can still sum over the shared join domain A. Assuming that each joined table Ri has a
kernel density estimator model p̂i, we define the generalized cross contribution Ĵo1,...,on

that needs to be computed for the cross product between all samples:

Ĵo1,...,on
=

∑︂
ν∈A

k∏︂
i=1

p̂(oi)
i (A1 = ν) (3.8)

Appendix A.1 provides a closed-form approximation for the generalized cross contribu-
tion of a Gaussian kernel. Now, since the kernels for each dimension are independent,
the final formula to compute the join selectivity for n equivalence classesΨ1, . . . ,Ψk over
a total of n relations can be computed by multiplying their respective generalized cross
contributions Ji (omitting the sample offsets for readability) with the contributions for
the local predicates c j:

Ĵ (Q) =
1∏︁n

i=1 si

s1,...,sn∑︂
i1=1,...,in=1

n∏︂
j=1

p̂
(i j)
j (c j)

k∏︂
j=1

Ĵ j (3.9)

3.5 Efficiently Joining KDE Models

In the previous section, we derived the theoretical foundation for computing join
selectivities from base table models. We now discuss how we can efficiently evaluate them
in practice. Our estimator receives the relational query Q = σc1 (R1) ▷◁R1.A1=R2.A1 σc2 (R2),

45

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

Map
Compute invariant
contributions

Filter
Filter points with
insignificant
contributions

Figure 3.1: Sample pruning computes the invariant contributions and removes
sample points with a negligible contribution.

as well as two KDE estimators with their respective base table samples S1,S2 and
bandwidth vectors δ1⃗, δ2⃗. Based on Equation (3.6), we know that computing the join
selectivity requires us to compute the cross contributions Ĵi, j for all s1 · s2 pairs from
the cross product of S1 and S2, incurring quadratic complexity. Accordingly, a naïve
implementation would severely limit the scalability and applicability of our approach. To
reduce the number of required computations, we now introduce two pruning techniques:
Sample Pruning and Cross Pruning. Algorithm 3.1 illustrates these methods and the
general selectivity estimation procedure.

Sample Pruning: If the local contribution for a particular sample tuple is sufficiently
small, the contribution of every derived tuple from the cross product will be negligible.
Thus, we can omit this sample point in all following computations, which we call Sample
Pruning (Lines 2 – 3). Similar to pushing down selections in query execution plans, we
can reduce the number of input tuples that have to be considered in the more expensive
computation of the cross contributions. We chose the threshold as the inverse of the
cross product size θ = 1

r1·r2
, as this limits the overall error to the join cardinality estimate

to at most one tuple.

As shown in Figure 3.1, sample pruning directly maps to the GPU primitives introduced
in Section 2.2.1: We compute the invariant contribution using a map primitive and select
sample points over the local contribution threshold using a filter operation.

Cross Pruning: Next, we compute the cross contributions (Line 10), multiply them
with their corresponding local contributions and sum them up to compute the join
selectivity (Line 11). In this part of the algorithm, we apply Cross Pruning to reduce the

46

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

computational load: As the Gaussian kernel applies smoothing by distance, it’s intuitive
that the cross contribution for two sample points becomes negligible when the distance
between the two points is very large. Again choosing the maximum tolerable error to be

1
r1·r2

, the maximum tolerable distance between two sample values is:

1
r1 · r2

> Nt(I)
1 ,δ

2
1+δ

2
2

(︂
t(j)
2

)︂
⇐⇒

1
r1 · r2

>
1√︂

2π
(︂
δ2

1 + δ
2
2

)︂ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−1
2

(︂
t(I)
1 − t(j)

2

)︂2(︂
δ2

1 + δ
2
2

)︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⇐⇒

⃓⃓⃓⃓
t(I)
1 − t(j)

2

⃓⃓⃓⃓
>

⌜⃓⃓⃓⃓⃓⃓⎷
−2 · ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√︂

2π
(︂
δ2

1 + δ
2
2

)︂
r1 · r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︂
δ2

1 + δ
2
2

)︂
(3.10)

To exploit this property, we first sort S2 on the join attribute (Line 5). Next, instead of
iterating over the cross product, the algorithm considers only tuples that are sufficiently
close to each other by iterating over all tuples from S1 (Line 7) and finding the first
qualifying tuple from S2 via binary search (Line 8). The function maxdiff computes the
maximum distance according to Equation (3.10). Finally, we iterate over all qualifying
tuples from S2 (Line 9 – 11), compute the cross contribution Ĵ (Line 10), and iteratively
compute the join selectivity (Line 11).

Cross pruning essentially requires us to perform a band join between the two samples.
This is visualized in Figure 3.2. On a GPU, we implement this by scanning S1 in a
coalesced fashion and performing the look-ups in the sorted relation in parallel. Each
thread accumulates the cross contribution for its part of the join result, aggregating it
using the reduce primitive as a final step. The mixture of random memory access and
cross contribution computations is a good fit for latency hiding in GPUs.

Sample pruning and cross pruning can significantly reduce the number of compu-
tations required to compute an estimate, in particular when the join and selections are
very selective. Sorting, if necessary, can be done in O

(︁
s2 log s2

)︁
, computing the local

contributions and pruning can be done in a single pass over each sample [70]. We
have to compute s1 binary searches, each requiring at most log (s2) accesses to S2. The
actual number of elements traversed in the inner while-loop is data-dependent. In the
degenerate case of a join that is close to a cross product, we still need to traverse S2

for every tuple in S1, and the complexity of the overall algorithm remains O (s1 · s2).
However, in the optimal case, we only have to check a handful of tuples from S1, which

47

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

Binary Search Band Join
Compute Cross Contribution
only for sufficiently close points

Sorted by join attribute A

Figure 3.2: Cross pruning applies a band join instead of a full cross product and,
thus, skips all combinations from the cross product resulting in a negligible cross
contribution.

yields O
(︁
s1 log s2

)︁
. We argue that the degenerate case rarely appears in real-world data

and provide an experimental evaluation on real-world data in Section 3.7.4.

3.5.1 Extending toMultiple Joins

Generalizing this algorithm to multiple joins requires only a few modifications. In
particular, we must apply sample pruning to all base table samples. We pick a left-deep
join order and sort the samples for the right-hand side of all join operators based on their
join attribute. This way, we ensure that we must sort at most j − 1 samples for a total of
j joins. As we only allow bandwidth values such that the function values of the cross
contribution never exceeds one, we can handle the joins by subsequent binary searches
and apply cross pruning for each of them.

3.6 Bandwidth Optimization

Prior work [70] demonstrated that query-driven bandwidth optimization is crucial to
the estimation quality of KDE-based selectivity estimators. During query execution, we
observe the true selectivity of operators, which allows us to optimize the bandwidth
based on the estimation error numerically. Since we cannot use sample or cross pruning
to speed up the gradient computations for base table KDEs — a negligible contribution
to the estimate does not imply a negligible contribution to the gradient —, we instead
rely on a derivative-free, bound-constrained optimization algorithm. In particular, we
use constrained optimization by linear approximation (COBYLA) [121] from nlopt [85]. We

48

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

use the same algorithm for KDE over join samples.
We optimize the bandwidth based on the multiplicative error, which, given the true

selectivity c and an estimate ĉ, is defined as:

m (c, ĉ) =
max (c, ĉ)
min (c, ĉ)

(3.11)

If the estimate is larger than the actual selectivity, the multiplicative error is equivalent
to the relative error; Otherwise, it is the inverse of the relative error. Thus, the smallest
multiplicative error is 1.0, and over- and underestimations are equally penalized. The
multiplicative error is the error metric of choice for cardinality estimation, as it minimizes
error propagation in query plans and correlates directly with plan quality [110]. By
optimizing for this error function, we ensure that the optimization translates to improved
query plans.

Given a set of representative queries Q1, . . . ,Qn, we then optimize the bandwidth
vectors for all tables δ⃗1, . . . , δ⃗m for the geometric mean over the estimation error:

arg min
δ⃗1,...,δ⃗m

⎛⎜⎜⎜⎜⎜⎝ n∏︂
i=0

m
(︂
J (Qi) , Ĵ (Qi)

)︂⎞⎟⎟⎟⎟⎟⎠
1
n

(3.12)

Note that the estimate Ĵ depends on the bandwidth vectors δ⃗1, . . . , δ⃗m. We can only
optimize the bandwidth for attributes that are actually covered in the queries Q1, . . . ,Qn.
We suggest collecting query feedback for all base table filters and subsequent join
operators in a query plan. This only requires keeping track of intermediate results,
which can be done with very little overhead. The optimization process can then be
executed periodically or triggered by a database command. Note that bandwidth
optimization does not block the KDE models, and thus, optimization and estimation can
be interleaved.

3.7 Evaluation

In this section, we present the experimental evaluation of our KDE-based join estimators
in terms of estimation quality and execution time. All experiments can be reproduced
using the code and datasets from our public repository1.

1https://github.com/martinkiefer/join-kde

49

https://github.com/martinkiefer/join-kde

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

3.7.1 Experimental Setup

The following datasets, workloads, and estimators were used in our experiments:

Estimators

We compared the following estimators:

Postgres: Our first baseline estimator uses the EXPLAIN feature of Postgres 9.6. Postgres
uses the classic join estimation formula, relying on the independence assumption and
1D statistics (frequent values, histograms, and distinct values per attribute).

Table Sample (TS): Our second baseline estimator, which implements naïve sample
evaluation based on uniform samples from the base tables.

Join Sample (JS): The final baseline estimator, which implements naïve sample evalua-
tion based on a single uniform sample from the join result.

Correlated Sample (CS): A sampling-based estimator operating on biased samples
constructed by using a common hash function on join attributes [157]. By correlating the
samples on the join attribute, the problem of empty join results due to independence
is avoided. Compared to other biased sampling algorithms, it does not require prior
knowledge of the data distribution.

AGMS: We implemented the AGMS sketch with extensions to filter conditions as
proposed in [157]. Random variables were generated by the EH3 hashing scheme, which
was shown to be favorable in terms of hash size and generation efficiency [127]. We
implemented range predicates using range-summation to avoid constructing sketches
by adding each value in the range individually [127].

JS+KDE: Our KDE estimator based on a join sample, as described in Section 3.4.1.

TS+KDE: Our base KDE estimator based on table samples, as described in Section 3.5.

Note that we specifically evaluated against estimators that are comparable in terms of
model construction and supported estimation operations (join subject to conjunctive
base table predicates). In particular, all compared estimators can be constructed in a
single pass over the data and can be maintained under updates.

All KDE models use bandwidth vectors optimized for the geometric mean of the
multiplicative error on a set of 100 training queries.

50

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

Datasets

We conducted our experiments based on the following datasets that cover both synthetic
and real-world examples:

SN (Shifted Normal): Synthetic dataset consisting of 100k tuples drawn from normal
distributions Nµ1,Σ, Nµ2,Σ, and Nµ3,Σ. Values were rounded to the closest integer to
simulate a discrete dataset. The covariance matrixΣwas chosen as

(︂
1200 1100
1100 1200

)︂
. The means

were chosen as µ1 = (500 700)T, µ2 = (600 700)T and µ3 = (700 700)T. Thus, all attributes are
dense and highly correlated.

IMDb: Real-world dataset based on data from the Internet Movie Database2, which
we obtained using the python package IMDbPY3 . Our queries use the tables title
(3.5m tuples), movie_keyword (6m), cast_info (50m), company_name (300k), and movie_-
companies (4m).

DMV: Real-world dataset based on data from a Department of Motor Vehicles [75, 104].
The dataset contains information on cars, their owners, and accidents in six relations
containing 23 columns. The relations contain between 269 and 430k tuples.

We used dictionary encoding to transform all string attributes into integers.

QueryWorkload

Every workload in our evaluation is defined by a prepared query statement and a
workload strategy (Uniform, Distinct). The prepared statement contains up to three joins
as well as selections with conjunctive range and equality predicates. The left-hand side of
the selection predicates is a base table attribute, while the right-hand side is a parameter.
We used the following algorithm to generate actual queries from the prepared statement
based on the chosen workload strategy:

1. We compute the full join in the prepared statement while ignoring the selections,
and project on the non-join-attributes in the prepared statement.

2. We select a tuple t from the join result based on the workload strategy: (Uniform)
We select a tuple from the join result with uniform probability. (Distinct) We
eliminate duplicates from the join result and draw a tuple with uniform probability.

2http://www.imdb.com/interfaces
3http://imdbpy.sourceforge.net

51

http://www.imdb.com/interfaces
http://imdbpy.sourceforge.net

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

3. For attributes subject to equality predicates, the values on the previously drawn
tuple t become the selection parameters. For an attribute A with range predicates,
we need to provide an upper and a lower bound. We retrieve the minimum value
minA and maximum value maxA after applying the equality predicates. Defining
the value of attribute A on the tuple t as t.A, we select the upper bound as uA =

[T.A+ (maxA −T.A) · rand()] and the lower bound as lA = [T.A− (T.A−minA) · rand()].
The function rand returns a random real value in [0, 1).

The uniform strategy follows the distribution in the join result and therefore favors
queries with higher selectivities. As the distinct strategy disregards the distribution of
tuples in the join result, it favors queries with lower selectivities. Intuitively, a learning
estimator should be more effective on the uniform workload as the queries focus on
strongly represented regions. The distinct workload is harder to learn, as the estimator
has to fit the entire dataset.

3.7.2 Estimation Quality

In the first set of experiments, we compared the accuracy of all estimators to get a feeling
of how our KDE-based join estimators stack up against the state of the art. For these
experiments, the size of base table samples was fixed to one percent, join samples and
number of AGMS sketches were chosen to match the memory required by the base table
samples. While the sample sizes for correlated samples vary inherently, we chose the
sampling threshold to meet the target size in expectation. The actual experiment then
consisted of optimizing the bandwidth of our KDE-based models on 100 training queries,
followed by measuring the multiplicative estimation error for all estimators on another
100 queries from the selected workload. We ran this experiment for different query
patterns over the dataset and both workloads, repeating it 20 times for each combination.

SN Dataset

Figure 3.3 illustrates the results of this experiment for the SN dataset. SN Q1 joins the
tables generated with µ1 and µ2 on their first attribute. The remaining two attributes
are subject to range selections. Methods based on uniform base table or join samples
clearly outperform the other estimators on this workload by more than 60% in terms of
the median estimation error. KDE on base tables provides a small improvement of up to
15% over plain base table sample evaluation, while join samples with and without KDE
both provide close to perfect estimates. Correlated samples provide the worst estimates

52

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

SN Q1 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

SN Q1 (Distinct)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

Post
gre

s

AG
M

S

Ta
ble

 S
am

ple
 (T

S)

C
orr

el
at

ed
 S

am
ple

Jo
in

 S
am

ple
 (J

S)

TS+K
D
E

JS
+K

D
E

SN Q2 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

Post
gre

s

AG
M

S

Ta
ble

 S
am

ple
 (T

S)

C
orr

el
at

ed
 S

am
ple

Jo
in

 S
am

ple
 (J

S)

TS+K
D
E

JS
+K

D
E

SN Q2 (Distinct)

Figure 3.3: Estimation quality, SN dataset. The y-axis shows the multiplicative
estimation error.

for this query and are off by one order of magnitude. As the join is not a PK-FK join, and
the join attributes are skewed, the problem tackled by correlated samples does not arise.

SN Q2 adds the table generated with µ3 to the join and introduces an additional range
predicate to the query. As for SN Q1, join sample-based estimators produce close to
perfect estimates. This is not surprising, as the complexity introduced by the additional
join is handled in the sampling process. TS+KDE is superior to all other base table
estimators and provides a better median estimation error by a factor of 4 than Postgres.
In contrast, table samples, AGMS, and correlated samples are heavily affected by the
additional joins and yield estimates that are off by up to seven orders of magnitude.

DMV Dataset

Figure 3.4 illustrates the results of this experiment for the DMV dataset. We evaluate
three query patterns over the four main tables of the datasets. DMV Q1 consists of a
single join and four base table selections (two range predicates, two equality predicates).
DMV Q2 and DMV Q3 successively add a join. Furthermore, they add two range

53

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

selections and one equality selection, respectively.
We observe that TS+KDE is superior to the other base table estimators and outper-

forms them by at least one order of magnitude in terms of the median estimation error in
all experiments. Only Join Sample and JS+KDE perform better by up to a factor of four.
While these estimators are very close regarding the median estimation error, JS+KDE
improves the estimation errors above the median for IMDb Q2 and Q3.

For DMV Q1, correlated sampling outperforms Table Sample by more than an order
of magnitude. However, for DMV Q2 and Q3, Postgres, Table Sample and Correlated
Sample perform very similarly.

The AGMS sketch scales poorly with the introduced selections and performs worse
than the other estimators in this experiment. Its median estimation error compared
to Postgres is worse by two orders of magnitude — and the upper whisker and box
boundary even extend beyond the plot boundaries. Given that the estimator variance
for the AGMS sketch is proportional to the size of the cross product and selections are
handled by joining with additional virtual tables [157], this behavior is expected.

IMDB Dataset

Figure 3.5 illustrates the results of this experiment for the IMDb dataset. IMDb Q1 joins
two tables subject to one range and two equality predicates. IMDb Q2 and Q3 add a join
and an equality selection predicate, respectively.

Join sample and JS+KDE provide close to perfect estimates for almost all experiments.
IMDb Q3 with the distinct workload is the only exception to this: While both estimators
have comparable median errors, JS+KDE shows a much better error distribution above
the median as the upper box boundary and whisker improved by one and two orders of
magnitude, respectively.

TS+KDE provides the best estimates among the base table estimators. We see drastic
improvements of an order of magnitude over correlated samples and the AGMS sketch.
Compared to Table Sample, we observe drastic improvements of more than an order of
magnitude for IMDBb Q2 (Distinct), Q3 (Uniform), and Q3 (Distinct) — the estimates
are comparable for all other experiments. Postgres estimation errors predominantly lie
between one and ten, which is very competitive — especially for Q2 and Q3. However,
TS+KDE still provides an improvement between factors of two and four for IMDb Q1
and Q2. For IMDb Q3, the provided estimates are comparable.

54

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q1 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q1 (Distinct)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q2 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q2 (Distinct)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Post
gre

s

AG
M

S

Ta
ble

 S
am

ple
 (T

S)

C
orr

el
at

ed
 S

am
ple

Jo
in

 S
am

ple
 (J

S)

TS+K
D
E

JS
+K

D
E

DMV Q3 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Post
gre

s

AG
M

S

Ta
ble

 S
am

ple
 (T

S)

C
orr

el
at

ed
 S

am
ple

Jo
in

 S
am

ple
 (J

S)

TS+K
D
E

JS
+K

D
E

DMV Q3 (Distinct)

Figure 3.4: Estimation quality, DMV dataset. The y-axis shows the multiplicative
estimation error.

55

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

�����

�����

�����

�����������������

�����

�����

�����

������������������

�����

�����

�����

�����

�����

�����

�����

�����������������

�����

�����

�����

�����

�����

�����

�����

������������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��
��

�
�
�
�

��
��
��
��
�
��
��
��
��

�
��
��
��
��
��
��
�
��
�

��
��

�

��
�
��
��
��
��

��
��
�
�

��
��
�
�

�����������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��
��

�
�
�
�

��
��
��
��
�
��
��
��
��

�
��
��
��
��
��
��
�
��
�

��
��

�

��
�
��
��
��
��

��
��
�
�

��
��
�
�

������������������

Figure 3.5: Estimation quality, IMDb dataset. The y-axis shows the multiplicative
estimation error.

56

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

Discussion

Based on the results of our experiments, we can make the following general observations:

1. KDE-based join estimators generally perform better than the AGMS sketch and
traditional estimators that rely on the independence assumption and 1D statistics.

2. KDE-based join estimators never perform significantly worse than their naïve
sample evaluation counterparts or correlated sampling, but usually improve the
estimates significantly.

3.7.3 Quality Impact ofModel Size

In our second experiment, we investigate how the relationship between the different
estimators changes with the model size. For this, we ran our previous experiments while
increasing the sample ratio — and, accordingly, the other model sizes — by factors of
two from 0.001 to 0.128. We report the geometric mean error for DMV Q1 (Uniform), as a
representative for estimates on a single join, and DMV Q3 (Uniform), as a representative
for multiple joins.

Figure 3.6 illustrates the results of this experiment for DMV Q1 with the uniform
workload. There are a few noteworthy observations: First, KDE-based estimators are
a significant improvement over naïve sample evaluation for small sampling fractions.
This is clearly visible for TS+KDE: A sampling fraction of 0.001 is insufficient for naïve
evaluation of base table samples, as the join between the two samples is likely to be
empty causing estimation errors of three orders of magnitude and more. Adding a
KDE model improves the estimation error by more than two orders of magnitude,
which outperforms Postgres by a factor of two. While correlated samples tackle the
same problem and bring substantial improvements over naïve base table samples for
smaller sample sizes, KDE models are still clearly superior. Furthermore, we see JS+KDE
bringing a 50% improvement over join sample evaluation for a sample size of 0.001.

Second, KDE-based estimators never perform significantly worse than Table Sample.
While correlated samples bring improvements of an order of magnitude and more for
small sample sizes, they converge slower to exact estimates. This causes an intersection
point, after which Table Sample yields a smaller estimation error. This is consistent with
our observations in Section 3.7.2, which showed that correlated samples are not always
preferable to uniform table samples. As sample evaluation is in the parameter space of
KDE-based estimators, their estimation error converges with their sample evaluation
pendants for larger model sizes.

57

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e+00

1e+01

1e+02

1e+03

1e+04

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 m

u
lt

ip
lic

a
ti

v
e
 e

rr
o
r

Sample Size (Relative to Base Table Size)

Table Sample (TS)
Join Sample (JS)

Correlated Sample
AGMS

TS+KDE
JS+KDE

Postgres

Figure 3.6: Estimation quality on DMV Q1 (Uniform) with growing sample sizes.

Figure 3.7 illustrates the results of this scaling experiment for DMV Q3 with the
uniform workload, which adds two more joins to the query. The key observation is that
larger sample sizes are required for the base table estimators to outperform Postgres
by 10% or more. TS+KDE provides better estimates at sample size 0.008; correlated
samples need twice as many points. A clear improvement for table samples is only
visible at a sample size of 0.128. JS+KDE provides better estimation errors than join
sample evaluation for sample sizes 0.001 to 0.004 by a factor between 1.5 and 2.

These experiments confirm that bandwidth-optimized KDE models can significantly
improve the estimates computed from samples. Furthermore, the measured estimates
were never significantly worse than the estimates provided by Postgres but are usually
much better depending on the sample size and the workload.

3.7.4 Performance Evaluation

In our final series of experiments, we evaluated the runtime scalability of our estimators
for increasing sample sizes.

58

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 m

u
lt

ip
lic

a
ti

v
e
 e

rr
o
r

Sample Size (Relative to Base Table Size)

Table Sample (TS)
Join Sample (JS)

Correlated Sample
AGMS

TS+KDE
JS+KDE

Postgres

Figure 3.7: Estimation quality on DMV Q3 (Uniform) with growing sample sizes.

Setup

As demonstrated in the prior publication by Heimel et al. [70], KDE models are very well
suited to be accelerated by graphics cards [70]. Accordingly, we implemented all estima-
tors using custom OpenCL kernels and primitives as provided by the Boost.Compute
framework4. Naïve sample evaluation on the join sample was implemented as a straight-
forward table scan, evaluation on the table samples was implemented by applying
the local filter predicates on the sample, followed by performing a binary search join.
Accordingly, both naïve estimators perform basically the same operations as our KDE
estimators but with less computational overhead and the most aggressive pruning.

The experiment was conducted on a custom server with an Intel Xeon Gold 5115
CPU in two sockets, an NVIDIA V100 GPU accelerator, and 188~GB of DDR4 memory.
The server was running Ubuntu Linux 22.04.1 with kernel 5.15.0. The accelerator
was controlled by NVIDIAs 515.65.01 driver. If not stated otherwise, estimators were
evaluated on the GPU.

We performed our experiments on the IMDb dataset, as it is the largest of our
evaluated datasets. We repeated the previous experiment for two queries over the IMDb

4www.boost.org/libs/compute

59

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

dataset while reporting the average runtime in milliseconds instead of the estimation
error. Furthermore, we compare JS+KDE and TS+KDE on a CPU and GPU to highlight
the impact of GPU acceleration.

IMDB Q1 (Uniform)

Figure 3.8 shows the results for query IMDb Q1 using the uniform workload. The first
observation is that the runtime for all estimators does not visibly increase until a sample
size of 0.016. This is caused by the overheads introduced by the OpenCL framework,
BoostCompute, and memory transfer dominating the runtime, which is roughly 0.7ms
for table sample estimators, 0.1ms for join sample estimators and 0.1ms for AGMS.

Once the actual computation dominates execution times, we see an increase in the
runtime for both AGMS (0.016) and JS+KDE (0.128). As join sample evaluation only
requires computationally cheap comparisons and increment operations for every tuple,
the framework overhead dominates throughout the entire experiment.

The runtime for Table Sample, TS+KDE, and Correlated Sample is close throughout
the experiment. The TS+KDE is consistently slower than the other estimators. It is at
most 60% worse than table or correlated sample, but it is less than 20% slower for most
sample sizes. The performance not increasing linearly with the sample size shows the
effectiveness of our pruning techniques: While computing the cross contribution naively
would result in a quadratic increase, the growth behavior with pruning does not differ
from Table Sample evaluation.

IMDB Q3 (Uniform)

To show the performance of our estimator for multiple joins, we repeated the experiment
for IMDb Q3, which adds two joins and additional base table predicates. The results are
shown in Figure 3.9. Again, we observe that for smaller sample sizes, the framework
overhead dominates the execution time. However, it is above 1 ms for base table models,
which is due to the additional number of involved samples. For AGMS and JS+KDE,
the execution time increases linearly, which can be seen for sample size 0.032 and larger.
For Join Sample, the overhead dominates for all sample sizes and the execution time
barely increases.

In this experiment, TS+KDE shows a significant overhead over Table Sample and
Correlated Sample: Correlated Sample and Table sample increase by a factor of 4.2 for
Correlated Sample and by a factor of 1.8 from sample size 0.001 to 0.128. Thus, the
increase in the runtime is not even linear. TS+KDE clearly diverges from the other

60

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e-02

1e-01

1e+00

1e+01

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 e

st
im

a
to

r
ru

n
ti

m
e
 i
n
 m

s

Sample Size (Relative to Base Table Size)

Table Sample (TS)
Join Sample (JS)

Correlated Sample

AGMS
TS+KDE
JS+KDE

Figure 3.8: Estimation time on IMDb Q1 (Uniform) with growing sample sizes.

estimators showing a roughly quadratic growth. Between the smallest and the largest
sample, the execution time increases by a factor of 24. Execution time is up to a factor of
20 larger when comparing TS+KDE to its sample evaluation counterpart.

While we see that the KDE overhead for large base table samples can be significant,
our pruning techniques are still very effective for this query, as the runtime complexity
without our pruning techniques would be quartic in the sample size.

Impact of GPU-Acceleration

Finally, we investigate the impact of GPU acceleration on the estimator runtime. Fig-
ure 3.10 compares the performance of our GPU and CPU implementation for IMDb Q1
(Uniform). We see that the estimator runtime for all implementations remains almost
constant for sample sizes of up to 0.016. This is due to overhead introduced by OpenCL,
BoostCompute, and kernel launches. Yet, GPU implementations consistently provide
faster execution times by a factor of eight for TS+KDE and a factor of six for JS+KDE. For
larger summary sizes and JS+KDE, estimator runtime increases linearly as the CPU as
kernel evaluations dominate the execution time. On the GPU, computational overhead
remains dominant, which widens the performance gap even further as sample sizes
increase. For TS+KDE, we see execution time increase by up to a factor of 2 on both

61

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e-02

1e-01

1e+00

1e+01

1e+02

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 e

st
im

a
to

r
ru

n
ti

m
e
 i
n
 m

s

Sample Size (Relative to Base Table Size)

Table Sample (TS)
Join Sample (JS)

Correlated Sample

AGMS
TS+KDE
JS+KDE

Figure 3.9: Estimation time on IMDb Q3 (Uniform) with growing sample sizes.

devices, while the performance gap is between a factor of six and ten.
Figure 3.11 shows the results for IMDb Q3 (Uniform). For JS+KDE, we see a similar

behavior as before. The larger absolute sample sizes lead to both CPU and GPUs showing
a linear performance increase for sample sizes starting at a relative sample size of 0.016,
while the performance gap is between a factor of six and 27. For TS+KDE, we see an
improvement by a factor of eight for small sample sizes, while the gap shrinks with
increasing sample size. By sample size 0.128, the improvement has reduced to a factor of
4.6. This is explained by the more complex cross pruning algorithm: As GPU threads
run in lock-step, skew in the number of tuples and search steps during cross pruning
impairs efficiency. This does not manifest as strongly for CPU threads that operate
independently.

Overall, we see that GPUs allow for larger model sizes within the same time budget.
For small sample sizes, the smaller overhead of our GPU implementation allows us to
compute estimates on less than 0.1 ms for JS+KDE and less than 1.1 ms for TS+KDE on
average. Our CPU implementation can not meet these execution times. Based on the
execution time improvement for the largest evaluated samples in IMDb Q3 Uniform,
we can expect a factor of 27x larger samples asymptotically for JS+KDE. For TS+KDE,
execution times clearly depend on the data distribution and query. Based on the results

62

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

1e-02

1e-01

1e+00

1e+01

1e+02

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 e

st
im

a
to

r
ru

n
ti

m
e
 i
n
 m

s

Sample Size (Relative to Base Table Size)

TS+KDE (CPU)
JS+KDE (CPU)

TS+KDE (GPU)
JS+KDE (GPU)

Figure 3.10: Estimation time for a CPU and GPU implementation on IMDb Q1
(Uniform) with growing sample sizes.

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

A
v
e
ra

g
e
 e

st
im

a
to

r
ru

n
ti

m
e
 i
n
 m

s

Sample Size (Relative to Base Table Size)

TS+KDE (CPU)
JS+KDE (CPU)

TS+KDE (GPU)
JS+KDE (GPU)

Figure 3.11: Estimation time for a CPU and GPU implementation on IMDb Q3
(Uniform) with growing sample sizes.

63

Chapter 3. GPU-Accelerated KDE for Join Selectivity Estimation

for IMDb Q3 (Uniform), we can expect at least a factor of four larger sample sizes. As
we have shown in our previous experiment, such increases in the model size can result
in substantial improvements in the multiplicative error.

3.8 Conclusion

In this chapter, we introduced a novel way to estimate join selectivities based on
bandwidth-optimized Kernel Density Estimators. Existing models suffer from at least
one of the following drawbacks: They (1) provide inaccurate estimates, (2) are expensive
to construct, (3) are restricted to a single type of query, or (4) are expensive or impossible
to maintain under changing data.

Our approach uses KDE models, which are constructed from base table or join
samples, and provides an estimate to its underlying distribution. They apply smoothing
to the sample distribution by placing probability density functions on all sample points,
averaging them to compute the final estimate. The degree of smoothing is controlled
by a hyper-parameter, the so-called bandwidth. Selecting this bandwidth parameter is
essential for the estimation quality and can be done by performing numerical optimization
over query feedback. KDE combines the flexibility and maintainability of a sample-based
method, with the quality of state-of-the-art selectivity estimators.

We evaluated the quality of our approach using queries on both synthetic and
real-world datasets. We found that KDEs provide significantly better join estimates than
traditional methods in case one of the underlying assumptions is violated. Compared
to naïve sample evaluation, our models can provide significantly improved results for
relatively small sample sizes, while still converging to the same accuracy for larger
samples. In practice, we suggest maintaining base table KDE models for all tables in a
database as they usually provide better estimates for supported operators and data types
(numeric attributes, dictionary encoded attributes). Joint KDE models can be added
manually when additional accuracy is required for particular joins. Finally, we have
confirmed that our generalization of KDE models to join selectivities strongly benefits
from GPU-Acceleration as at least four times larger models can be evaluated in the same
time budget.

Overall, this work strengthens the case for statistical coprocessing on GPUs to support
query optimization in relational database systems.

64

4
Scotch: A Holistic Approach to

FPGA-Accelerated Sketching

FPGAs have shown admirable performance for sketch construction in terms of through-
put and energy consumption in prior work [30, 32, 130, 139, 153, 154]. However,
developing and optimizing the RTL for sketch implementation is a time-intensive and
cumbersome process conducted by an expert. In this chapter, we introduce the Scotch
system to generate sketching RTL without expert involvement and to adapt the sketch
size to the underlying FPGA and I/O requirements independent of the vendor and use
case. The work shows that code generation and automatic optimization substantially
lower the entry barrier to implementing FPGA-accelerated sketching. The generated
accelerators deliver competitive performance compared to handwritten implementations
and mostly outperform parallel software implementations in terms of energy efficiency
and throughput.

This chapter is mainly based on our publication ’Scotch: Generating FPGA-Accelerators
for Sketching at Line Rate’ [89].

4.1 Introduction

Since analyses over sketch summaries shift the computational pressure from the analysis
to the summary construction, maintaining the summaries at high throughput is critical.
Implementations based on multi-core CPUs or GPUs have high energy consumption
and often fail to deliver the bandwidth required to satisfy modern interconnects for

65

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

network (100G Ethernet, Infiniband) and storage (PCIe 3.0+, SATA Express). Field-
Programmable Gate Arrays (FPGAs) allow developers to construct custom hardware
based on reconfigurable logic elements. Custom hardware allows for high degrees of
parallelism, which enables data processing at line rate. These capabilities are a perfect
match for the parallel computations over state commonly found in sketching algorithms.

However, implementing sketching algorithms on FPGAs is tedious. An FPGA expert
is required to find an implementation that satisfies bandwidth constraints and resource
limits while maximizing the sketch size for optimal accuracy. The expert has to make
performance-critical design decisions, including memory architecture and pipelining
of operations. Furthermore, maximizing the summary size requires time-consuming
manual tuning. Previous research in the area focused on implementation strategies for
individual sketches and use cases manually tailored to the FPGA [32, 130, 154].

In this work, we take a holistic perspective on FPGA-accelerated sketching by creating
FPGA accelerators for an entire class of sketching algorithms without the need for explicit
hardware description or manual tuning. We propose the Scotch framework that makes
four main contributions:

1. Programming models to describe a variety of different sketching algorithms and
ScotchDSL, a domain-specific language to implement user-defined functions for
these models

2. A code generator producing a highly efficient hardware description based on
ScotchDSL functions

3. An auto-tuning algorithm that maximizes the sketch size within the resources of
the FPGA and target throughput

4. An extensive evaluation of our approach on various FPGAs that covers comparisons
to CPU and GPU baselines in terms of throughput and energy-efficiency

In the following Section 4.2 we provide an overview of the Scotch system. We then
introduce ScotchDSL and its programming model in Section 4.3. Section 4.4 explains the
code generator and the generated hardware architecture. It is followed by extensions
for data parallelism in Section 4.5 and a discussion of the limitations of the approach in
Section 4.6. Finally, we introduce our auto-tuning algorithm in Section 4.7. Section 4.8
presents our experimental evaluation. Section 4.9 covers related work, and Section 4.10
concludes the chapter by summarizing our findings.

66

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

4.2 System Architecture

In this section, we provide an overview of Scotch and the accelerators generated. In
Section 4.2.1, we first motivate and introduce the design requirements of Scotch. The
following Section 4.2.2 shows the architecture of the accelerators generated by Scotch.
Finally, Section 4.2.3 gives a high-level overview of the Scotch system.

4.2.1 Design Requirements

In the following, we describe the problems and highlight the design requirements that
are the foundation of Scotch.

DR1: Lightweight Sketch Specification. While sketching is typically very concise in
its mathematical definition, implementing it on an FPGA adds additional complexity.
An FPGA expert is required since the developer needs hardware design knowledge to
make architectural decisions. In particular, the expert has to pipeline computations and
decide on a memory architecture. Scotch provides an intuitive programming model
and domain-specific language to describe sketching. These descriptions are concise and
close to their mathematical definition. Code generation replaces the tedious process of
programming RTL for these functions. Efficient auxiliary components, such as memory,
are generated automatically according to the requested sketch summary size without
user involvement.

DR2: Automated Tuning. As a sketch summary’s accuracy increases with its size,
providing a large summary size is crucial for a sketching accelerator. However, finding a
large sketch size within the FPGA’s resources while meeting the operating frequency
required by the interconnect is tedious. The developer has to vary the size and compile
the accelerator by trial and error. This process requires an FPGA expert’s intuition
and is inconvenient given compile times in the order of hours. Scotch maximizes the
sketch size for a given FPGA and interconnect without manual tuning. An auto-tuning
algorithm systematically varies the summary size while being economical in the number
of performed compilations.

DR3: Device and I/O Agnosticism. Various FPGAs and boards exist with different
supported interconnects and target domains ranging from IoT applications to large-scale
network processing. Implementations created for a particular setup are usually not easily
portable to another. Scotch separates the implemented algorithm from the FPGA vendor,

67

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

model, and board by encapsulating these details in an I/O module. RTL generation and
tuning make no assumptions on the device or interconnect.

DR4: Constant Processing Rates. Compared to general-purpose processor architectures
such as GPUs or CPUs, constructing custom hardware on FPGAs has a significant benefit:
They can provide high throughput at a constant rate, which enables data processing at
the full rate of the interconnect. However, this requires a careful design of all components
implementing the sketching functionality. Scotch generates hardware that processes data
at a constant rate. All components are scalable with the sketch size and fully pipelined,
meaning that all components are divided into pipelined substages and process one set
of input values per clock cycle. They do not require stalls or flushing pipelines due to
data dependencies. For high-throughput interconnects, Scotch provides mechanisms to
exploit data parallelism.

4.2.2 Accelerator Design

The accelerators generated consist of two components connected via a common interface:

Sketching Unit: Processes input values by storing and manipulating the sketch summary
state. Furthermore, it exposes sketch summary state when requested via control signals.
Scotch generates and optimizes the sketching unit.

I/O Controller: Implements off-chip communication via an interconnect, such as Ethernet
or PCIe. It interprets signals arriving on the interconnect as input values or as requests
to expose the sketch summary and drives the interface signals accordingly. The I/O
controller has to be provided by an expert as, similar to drivers in operating systems, its
implementation depends heavily on the used FPGA, board, and interconnect.

Separating sketching and I/O enables flexibility in terms of the interconnect (DR3).

4.2.3 Scotch

Scotch generates optimized hardware accelerators for a broad class of sketching al-
gorithms. Users specify the sketching process in a convenient domain-specific lan-
guage, while code generation and automated tuning replace the complicated and
time-consuming RTL development and manual tuning of the summary size. Figure 4.1
illustrates the high-level system architecture.

A user implements sketching algorithms by providing user-defined first-order
functions. They are arguments to higher-order functions supported by Scotch. User-
defined functions are given in ScotchDSL, a domain-specific language that allows for

68

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

(1) (2) (3)

Sketch Description
(ScotchDSL)

Sketching Unit

Device Descriptor
(JSON)

Optimal
Bitstream

Parameters

Compilation Report, Bitstream

I/O Controller
(Design Project)

Figure 4.1: Scotch system architecture

an intuitive description of the sketching computations close to their mathematical
formulation. ScotchDSL and the underlying programming model satisfy DR1 and are
described in Section 4.3.

The RTL generator produces hardware description code for the entire sketching
unit based on ScotchDSL functions. The generated RTL is fully pipelined, enabling
high constant processing rates (DR4). The RTL generator and the generated hardware
architecture are discussed in Section 4.4. A top-level project, which contains the I/O
controller and constraints, instantiates and connects to the generated sketching unit
yielding a complete design for the accelerator. Finally, the vendor-specific toolchain
compiles the design, resulting in a bitstream to configure the FPGA and reports on
resource utilization and timing.

Exploiting data parallelism is a common technique to achieve high throughput in
parallel processor architectures. The RTL generator supports data parallelism by trading
FPGA resources for higher maximum throughput (DR4). We discuss the underlying
approaches in Section 4.5.

Scotch’s auto-tuning algorithm maximizes the target sketch size within the resource
limitations of the FPGA and clock rate constraints set by the I/O controller for interconnect
used. Thus, it ensures high accuracy while creating a fully functional accelerator. The
algorithm repeatedly parameterizes the RTL generator, compiles the project, and analyzes
the resource consumption and timing reports in a feedback loop. The auto-tuning
algorithm satisfies DR3 and is given in Section 4.7.

4.3 Sketch Specification

In this section, we introduce the sketch specification approach used in Scotch to satisfy
DR1. In Section 4.3.1, we propose the Select-Update model that allows for a convenient
description of sketching in terms of user-defined functions. It serves as the underlying

69

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Figure 4.2: Select-Update model

programming model for Scotch. In Section 4.3.2, we introduce ScotchDSL, a domain-
specific language allowing developers to specify these user-defined functions close to
their mathematical formulation while being translatable to RTL.

4.3.1 Select-UpdateModel

The maintenance process of many popular sketching algorithms can be generalized as
updating one entry per row of a matrix. Based on this observation, we propose the
Select-Update model to describe sketching by specifying a select function that selects the
entry in a row and an update function that determines the new value of the selected entry.
Table 4.1 provides a non-exhaustive list of sketching algorithms fitting this model. The
Select-Update model serves as a programming model for Scotch.

Formally, the Select-Update model defines an update to the sketch matrix as follows:
A sketch matrix S ∈ Sm×n is adapted for each observation t ∈ T. For each row i ∈ {1 . . .m},
a selector function seli : T→ {1, . . . ,n} determines an entry that is updated based on an
update function upi : T × S→ S. Formally, an update is defined as:

S [i, seli(t)] := upi (t,S [i, seli(t)]) , i ∈ {1 . . .m} (4.1)

The domains of the state S and value T are fixed-size bit sequences; their interpretation
is left to the select and update function.

Select and update functions are either the same for all i or drawn from a family
of functions based on a randomly drawn seed θ ∈ Θ, where the seed domain Θ is a

70

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

fixed-size bit sequence as well. This allows for convenient definitions in a single function
that takes the seed as an optionally used third argument. Thus, we specify seli(t) and
upi(t, s) by specifying sel(t, θi) and up(t, s, θi), respectively.

The Select-Update model includes sketching algorithms operating on a single column,
such as AGMS [4] or MinHash [18]. In these cases, the specification of a select function
is unnecessary, as there is only a single entry per row. This property allows for
simplifications and optimizations, which we highlight throughout the chapter. We refer
to these sketches as column sketches, while referring to the general case as matrix sketches.
Sketches that operate on a single row are referred to as row sketches.

We provide the Select-Update model definitions of the sketches introduced in
Section 2.1.2. AGMS is a column sketch; CM and FAGMS are matrix sketches.
Example 1 (CM): The CM sketch [39] we introduced in Section 2.1.2 requires a member
of a family of two-wise independent hash functions computes the offset in each row. A
common choice is H3 [123], which computes an h-bit hash value for a k-bit key by using
a random seed θ consisting of h · k bits.

sel(t, θ) − 1 =
⨁︂

j∈{0...k−1}

(︁
t
[︁
j
]︁
∧ θ

[︁
j · h + 1 . . .

(︁
j + 1

)︁
· h

]︁)︁
(4.2)

The subtraction in the first term accounts for one-based indexing. The operator ⊕
denotes a sequential bitwise XOR operation; the operator ∧ denotes a bitwise logical
AND between the j-th bit of t and j-th sequence of h bit in θ. The following update
function denotes an increment to the selected state:

u(t, s, θ) = s + 1 (4.3)

Example 2 (AGMS): The AGMS sketch [4, 157] requires a member of a family of
independent hash functions maping a k-bit key to {+1/ − 1}. The EH3 family was found
to be a good choice [50, 128]. The EH3 hash functions require a random seed θ consisting
of k + 1 bits.

The function eh3 applies bitwise operations on the input value and the seed:

eh3(t, θ) = h(t) ⊕ θ[k + 1] ⊕
⨁︂

r∈{1...k}

(θ [r] ∧ t [r]) (4.4)

h(t) =
⨁︂

r∈{1.. k2 }

t[2r − 1] ∨ t[2r] (4.5)

71

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Table 4.1: Sketching algorithms generalized by the Select-Update model and
implementable in ScotchDSL

FM [53] MinHash [18] FAGMS [37] CM [39]

AGMS [4] HyperLogLog [52] Bloom Filter [11] Fast-Count [152]

The update function is then defined as:

u(t, s, θ) = s +

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 if eh3(t, θ) = 1

−1 else
(4.6)

Example 3 (FAGMS): Replacing the update function of the CM sketch with the AGMS
update function yields FAGMS.

4.3.2 ScotchDSL

Scotch generates the sketching unit RTL based on user-defined select and update
functions. A programmer provides these functions in ScotchDSL, a domain-specific
language that describes the flow of computations from the input variables to the function
result in terms of operations on bit vectors of arbitrary size. It is sufficiently expressive
to implement the sketching behavior while ensuring that the computations translate to
efficient hardware.

An algorithm implementation in ScotchDSL consists of an implementation of the
user-defined functions and a descriptor file. The descriptor file contains the number
of bits required for the state, input value, seeds, and auxiliary variables. ScotchDSL
function implementations consist of consecutive variable assignments that set the value
of a variable to the result of the expression on its right-hand side. Functions end with an
assignment to the output variable.

72

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

ScotchDSL supports the following operations in the expressions:

1. Selecting an individual bit or a range of bits from a bit vector

2. Bitwise logical operations and comparisons

3. Signed and unsigned arithmetic operations and comparisons

4. Auxiliary functions that take variables as an argument and return a bit vector.

Besides simple assignments, we support conditional assignments and for-loops. For-
loops have a fixed iteration range and replace repetitive assignments.

Operating on bit vectors allows the specification of algorithms closer to their math-
ematical definition (DR1). For example, the EH3 hash function given in Equation 4.4
requires computations on a 33-bit seed, which complicates an implementation in pro-
gramming languages such as C/C++, as integer types are provided at a fixed granularity
of bytes. ScotchDSL functions usually consist of a few lines and allow for quick
customizations such as changing the state size or adding a frequency to an update.

As hardware definition languages operate on bit vectors in the same way, all
expressions map to equivalent expressions in the target language VHDL. By providing
a restricted set of operations, we ensure that the function code maps to pipelined
RTL that is synthesizable on an FPGA (Section 4.4.2). Constructs that prevent a fully-
pipelined design or are not synthesizable to FPGA hardware are not supported (e.g.,
data-dependent loops).

The ScotchDSL syntax borrows from VHDL. In the following, we provide ScotchDSL
implementations for the previously introduced algorithms and highlight the language
constructs. The descriptor files are regular JSON files and are omitted for the sake of
space. Note that indexes in ScotchDSL are zero-based.

Example 1 (CM, Select): Listing 4.1 shows the implementation of the CM/H3 select
function given in Equation 4.2. The code computes a 32-bit hash value (offset) from a
32-bit observation (t) based on a 32 · 32 = 1024-bit seed (seed).

Line 1 shows the regular assignment of a vector expression to a variable. It computes
the first iteration of the sequential XOR in Equation 4.2. The expression seed(31 downto 0)
selects the first 32 bits of the seed, and the & operator represents a bitwise AND. The
built-in auxiliary function expand(t(0), 32) returns a bit vector consisting of 32 bits all set
to the zeroth Bit of t. The output of the expression is stored in the auxiliary variable x.
Lines 2-4 show a for-loop. It iterates from 1 to 30 using the variable i. The loop body
computes the sequential XOR up to the i-th bit and seed by applying the XOR operator ˆ

73

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

1 x <= expand(t(0),32) & seed(31 downto 0) ;
2 for i in 1 to 30 {
3 x <= (expand(t(i),32) & seed((i+1)*32−1 downto i*32)) ^ x;
4 }
5 offset <= (expand(t(31),32) & seed(32*32−1 downto 31*32)) ^ x ;

Listing 4.1: Select function for CM with H3

1 p <= parity(seed(31 downto 0) & t);
2 h <= parity((t(30 downto 0) | t(31 downto 1))
3 & '1010101010101010101010101010101');
4 outstate <= p ^ h ^ seed(32) = '1' ?
5 signed(state)+1 : signed(state)−1;

Listing 4.2: Update function for AGMS with EH3

to the last value of x. Line 5 computes the last iteration of the sequential XOR and stores
the result in the output variable offset.

Example 2 (AGMS, Update): Listing 4.2 shows the implementation of the update
function for AGMS with a 32-bit input value and state. Line 1 computes the result of
the sequential XOR operation in Equation 4.4. It computes the bitwise AND operation
between the first 32 bits of the input variable seed and the input value t. Finally, it
computes the full sequential XOR by using the parity auxiliary function provided by
Scotch. Similarly, Line 2-3 computes the non-linear function h given in Equation 4.5.
It computes a bitwise OR between the first and last 31 bits of the input value v. The
parity function computes the sequential XOR; the bit vector literal in Line 3 ensures
that only disjoint pairs of bits contribute to the parity. Finally, Lines 4-5 compute a
+1/ − 1 update as shown in Equation 4.6 by using a conditional assignment of the form
var <= condition ? expr : expr. In the condition, we compute the full result of the function
eh3 given in Equation 4.4 and check whether the result is equal to the bit vector literal ’1’.
If the condition holds, the current state is incremented; otherwise, it is decremented. The
built-in function signed assigns signed integer semantics to a bit vector for arithmetic.

4.4 RTL Generator

In this section, we introduce our approach to RTL generation for the sketching unit.
In Section 4.4.1, we provide an overview of the RTL generator and the sketching unit
architecture. Section 4.4.2 describes the translation of ScotchDSL functions to function
units that perform all algorithm-specific computations. A pipelined RAM holds the
summary state. We explain its architecture in Section 4.4.3. Compute units contain the

74

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Value

State Out

Request
Compute Unit

Row 1
Row 1

Row m

Row ...

State
Memory

Compute Unit
Row m

... ...
State
Transfer
Controller

Data Processing Pipeline State Transfer Pipeline

State
Memory

Figure 4.3: Sketching unit architecture

Select Unit Seed Update Unit Seed1. Generate ScotchDSL
Function Units

Compute Unit Select Seed Update Seed2. Generate Compute
Unit

Sketching Unit3. Generate Sketching
Unit

Include Include

Instantiate

Figure 4.4: RTL generation process

ScotchDSL function units and perform all auxiliary operations. We explain the compute
unit architecture and its components in Section 4.4.4. The state transfer controller
retrieves and exposes the sketch state. We describe its architecture in Section 4.4.5.

4.4.1 Overview

The RTL generator creates a VHDL hardware description for the sketching unit based
on ScotchDSL functions. The number of rows and columns for the sketch are input
parameters and varied by Scotch’s auto-tune algorithm. According to the desired state
matrix shape, the RTL generator instantiates and parameterizes all components in the
sketching unit. We provide an overview of the sketching unit architecture and then
outline the RTL generation process.

Figure 4.3 shows the top-level architecture of the sketching unit. The sketching unit
performs two tasks: First, it adjusts the summary state according to input values and,
second, exposes it to the I/O controller. Each row of the sketch is represented by a
dedicated compute unit and state memory, which operate independently and in parallel.
The compute unit processes one input value per clock cycle and initiates read and write
operations on the state memory. The state transfer controller exposes the sketch state
when triggered by an outside request. It connects to the state memory of every row and
dispatches read requests.

75

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

The RTL generator creates the sketching unit’s hardware description in a three-step
process shown in Figure 4.4. First, the generator translates ScotchDSL to function units.
They implement the computation of the select and update functions while leaving the
random seed as an open parameter. Second, it generates a compute unit by adding all
auxiliary components. Third, the RTL generator creates the sketching unit. It instantiates
a compute unit and state memory, sets the seeds, and adds the state transfer controller.

The sketching unit is fully pipelined to achieve high operating frequencies. The
generator adjusts the interfaces and internals automatically according to the size of the
state and input value of ScotchDSL functions. In the following, we detail the architecture
and generation of the individual components. We assume sketching units consume one
input value per clock cycle and discuss data parallelism in Section 4.5

4.4.2 ScotchDSL Function Units

ScotchDSL function units implement the sketch-specific computations in hardware:
Select function units compute a row offset from the input value. Update function units
compute the new state from the input value and previous state. The RTL generator
implements them based on the provided ScotchDSL functions, for which we solve two
problems: First, we have to translate the imperative ScotchDSL user-defined functions
to pipelined RTL. Second, we have to ensure that the generated RTL does not introduce
data hazards inside the update function unit.

The general translation mechanism consists of three steps:

Step 1: Abstract Syntax Tree (AST). The RTL generator parses the input function file
and creates an AST.

Step 2: Dependency Graph. The RTL generator transforms the tree into a dependency
graph that contains a node for every function input variable and assignment. It unrolls
loops in the process. When the statement node B directly depends on the result of a
node A, a directed edge from a node A to node B is inserted. The resulting dependency
graph represents the flow of computations from input variables to the output variable.

Step 3: Function Unit. The RTL generator translates the assignment graph to RTL for
the function unit. Each assignment node results in a synchronous component that
computes the result and buffers the output. Edges between assignment nodes create
connections in the top-level function unit. If necessary, the RTL generator adds buffers
to ensure intermediates for the same input value arrive at the same clock cycle.

76

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Pre-Update Atomic Update

Function Unit RTLDependency Graph

Figure 4.5: Dependency graph and function unit RTL generated for the AGMS
update function (Listing 4.2)

The resulting function unit computes the ScotchDSL function in a pipelined fashion
based on the input value and seed. As our architecture instantiates one dedicated
compute unit per row, seeds are constants. Figure 4.5 shows the dependency graph and
the function unit for the AGMS update function given in Listing 4.2.

While the general translation mechanism is sufficient for select functions, update
functions also depend on the previous state. As the update function computes new
state values in every clock cycle, data hazards occur if a later update overwrites a state
used for a computation in the update function pipeline. Resolving these data hazards
requires stalling or flushing the pipeline, which conflicts with DR4. Instead, the RTL
generator prevents data hazards by ensuring only the output value computation accesses
the previous state. If the function code violates this condition, the RTL generator inlines
the computations for assignments required by the output value computation until the
condition holds. We refer to the single computation of the new state as the atomic update
while calling the rest of the update function pipeline the pre-update.

4.4.3 StateMemory

The state memory holds each row’s state entries in a BRAM-based pipelined random
access memory architecture. A modern FPGA contains hundreds to thousands of BRAM
blocks, each providing dense random memory in the order of kbits with configurable
width and depth. BRAM blocks are dual-ported and process exactly one read and write
operation per clock cycle to independent offsets when operating in simple dual-port mode.
Maintaining the sketch size for large rows necessitates combining multiple BRAM blocks
to provide sufficient memory depth.

While synthesis tools can automatically construct deeper RAM by combining k
BRAM blocks, they naively multiplex and demultiplex reads and writes. This is feasible

77

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Read State

Write

Memory Segment

BRAM

Segment 1

Memory Segment

BRAM

Segment ...

Memory Segment

BRAM

Segment k

Figure 4.6: Pipelined memory architecture

for small values of k. However, prior work confirmed that this approach scales poorly
compared to a pipelined memory architecture [154].

Figure 4.6 shows the pipelined memory architecture. It consists of k segments, where
each segment contains a BRAM block and is exclusively responsible for a part of the
address range. Read and write requests to an address are served by their corresponding
memory segment. All other segments forward the request. Memory segments buffer
requests before forwarding them to the next segment, creating a pipeline that consumes
one read and write request per clock cycle with a latency of k clock cycles and a
throughput of one read and write request per clock cycle. The width of the memory is
the state size. The segment depth is a parameter to the code generator. Scotch sets it
according to the depth supported by the target device’s BRAM elements for the given
state width.

The RTL generator simplifies the memory architecture for column sketches to a single
register since random memory access is not required.

4.4.4 Compute Unit

Compute units process the input values for one row of the sketch by evaluating the
select and update function and updating the per-row state according to the ScotchDSL
function units. .

Overview

The compute units are pipelined and consist of several substages. Primarily, they consist
of stages for the select and update function evaluation and stages accessing state memory.
Furthermore, the RTL generator adds auxiliary stages to truncate the select function’s
output value and to prevent data hazards. Figure 4.7 shows the compute unit architecture
with all substages. Note that the select, pre-update, data forwarding unit (DFU), and
memory stages consist of several substages.

78

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Select Truncate DFUMemory
Read

Memory
Write

Atomic
Update

Pre-Update
value

Figure 4.7: Compute unit architecture

Select: The select function unit computes the output of the select function given in
ScotchDSL. As Scotch varies the number of columns in the auto-tune algorithm, we
assume the select function provides sufficiently large offsets and truncate them to the
required range in the truncate stage.

Truncate: We truncate the offset provided by the select function to the range [0,n − 1], n
being the number of columns in the sketch.

Memory Read: The state memory retrieves the state for the previously computed offset.

DFU: As the compute unit consists of several substages with multiple clock cycles of
latency, a state value read from memory for a particular offset can be overwritten by
updates further down the pipeline. To prevent data hazards from causing lost updates,
a data forwarding unit (DFU) tracks recent updates and ensures that only the most
recent state values enter the atomic update stage. Section 4.4.4 introduces our novel
fully-pipelined data forwarding unit architecture.

Pre-Update: A concurrent stage computes the inputs to the atomic update stage, as
these computations do not depend on the state.

Atomic Update: The atomic update is computed based on the intermediates from the
pre-update stage and the most recent state value arriving from the DFU. As the DFU can
not see the very last update, the atomic update stage tracks its last computed state and
uses it in case of two consecutive updates to the same offset.

Memory Write: The state memory stores the previously computed new state.

The RTL generator omits the select, truncate, and DFU stages as an optimization for
column sketches since no random memory access is required.

Data Forwarding Unit (DFU)

The DFU resolves data hazards caused by the pipelined memory architecture. Data
hazards occur when a state read from memory is altered by an update further down

79

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

the pipeline. The DFU delays the computation of the atomic update to replace outdated
states with the most recent value.

Figure 4.8 shows the architecture of our DFU. We first explain the key idea of our
DFU and then introduce the optimized architecture used by the RTL generator.

Key Idea: Our DFU tracks the state-offset pairs leaving the atomic update stage in a
shift register of size l. It compares state-offset pairs from the memory read stage to the
shift register values in l stages. Each stage i ∈ {1 . . . l − 1} compares the incoming state to
the i-th and (i + 1)-th least recent entry in the shift register. If one or both entries from
the shift register coincide with the input offset, the most recent state in the shift register
entries is passed to the next stage instead of the input state (3-way Compare-Forward).
The last stage l only performs a single comparison with the most recent entry in the shift
register (2-way Compare-Forward). This approach ensures that, when leaving the DFU,
a state-offset pair has observed all updates caused by its second to 2l-th successors.

Optimization: As 3-way Compare-Forwards are complex and reduce the scalability of
the DFU, Scotch avoids them by splitting the DFU stages into three parallel pipelines.
The i-th stage of the upper pipeline compares the input value to the i-th value in the
shift register, while the lower stage compares the input value to the (i + 1)-th value. This
separation allows us to use simple 2-way Compare-Forward logic. However, the DFU
has to track which pipeline carries the most recent state. If there is a match in the lower
or upper pipeline exclusively, this pipeline carries the most recent state. If there is a
match in both, the (i + 1)-th value takes priority as it is more recent. In case there was no
match, the previous priority remains valid. We perform these computations in a separate
priority resolution pipeline with access to the results of the previous stage’s comparisons.
The final stage forwards the most recent state from either the l-th position in the shift
register, the upper pipeline, or the lower pipeline. This requires a 2-way Forward based
on the priority and an additional 2-way Compare-Forward.

The size l of the DFU that prevents all data hazards depends on the number of
segments in the state memory k. There are a total of k + l successors in the pipeline that
may cause data hazards. The DFU and atomic update track the next 2l updates. Thus,
picking l = k results in a minimal DFU that prevents all data hazards.

4.4.5 State Transfer Controller

The state transfer controller exposes the state of the sketch summary to the I/O controller.
It connects to the state memory of all rows and sequentially reads all m · n state values.

80

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Most recent
(State, Offset)

from Atomic
Update

2-Way
Compare
Forward

2-Way
Compare
Forward

2-Way
Compare
Forward

2-Way
Compare
Forward

2-Way
Priority

Forward
+

2-Way
Compare
Forward

Priority
Resolution

2-Way
Compare
Forward

2-Way
Compare
Forward

Priority
Resolution

2-Way
Compare
Forward

2-Way
Compare
Forward

Priority
Resolution

2-Way
Compare
Forward

2-Way
Compare
Forward

Priority
Resolution

Most recent
(State, Offset)

from Atomic
Update2-Way

Compare
Forward

3-Way
Compare
Forward

3-Way
Compare
Forward

3-Way
Compare
Forward

3-Way
Compare
Forward

2-Way
Compare
Forward

Key Idea:

Optimized:

...

Figure 4.8: Data forwarding unit architecture

81

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

4D

4D

4D

4C

4C

Counter

State
Row 1

State
Row 2

State
Row 3

State
Row 4

transfer
enable

row,
offset

Dispatch
Stage 2
(row bit 2,3)

Collect
Stage 1

State
Read

Collect
Stage 2

Dispatch
Stage 1
(row bit 0,1)

... 4C
state

Figure 4.9: State transfer controller architecture

As Scotch aims to maximize the sketch size, the state transfer controller must scale with
the number of rows. Particularly column sketches require state transfer controllers with
a high number of connections.

Figure 4.9 shows the architecture of our transfer controller. A dispatch unit issues
read and write requests to the per-row state memory, while a collect unit routes the result
of the request to the output signals. Dispatch and collect units both follow a tree-shaped
structure where each tree level is a pipeline stage. The pipelined tree structure prevents
drops in the operating frequencies due to high fan-out in the dispatch unit and high
fan-in in the collect unit by distributing the logic over several stages.

The dispatch unit maintains a counter for rows and offsets. The counters adjust after
every request. When the I/O controller requests the next state value, several stages of
4-way dispatch logic (4D) route the selected offset to the selected row’s state memory.
As soon as the state memory serves the read request, 4-way collect (4C) logic routes the
state value to the output signals.

As the per-row state memory has only one read port, value processing and state
transfer are mutually exclusive. Thus, state transfer must wait until all updates are
written to state memory.

4.5 Data Parallelism

The sketching unit described in the previous sections consumes one input element per
clock cycle. However, this is insufficient to satisfy high-bandwidth interconnects such as
100G Ethernet. I/O modules interfacing such interconnects have to forward multiple
input elements per clock cycle as the operating frequency of state-of-the-art FPGAs is

82

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

limited to hundreds of Megahertz. Thus, data-parallel sketching units are required.
This section describes the two mechanisms Scotch uses to provide data parallelism
and satisfy DR4 for high-bandwidth interconnects: Section 4.5.1 introduces a general
mechanism that exploits data parallelism by replicating components of the sketching
unit. Section 4.5.2 introduces the merged updates for column sketches, which explicitly
incorporates data parallelism to provide an improved resource utilization.

4.5.1 Replication

The most intuitive approach to data-parallel sketching with d simultaneous input values
is maintaining d replicas of the sketch in parallel. The d separate sketches can be evaluated
separately or merged into a single summary by an application. While the approach is
simple, it also comes with approximately d times higher ELU and BRAM consumption.

If a data-parallel sketching unit with a replication factor of d is requested, Scotch
generates d replicas of each compute unit and state memory. The components belonging
to the same replica connect to the same input value pipeline. The state transfer controller
is shared among replicas to save resources. The I/O controller may also instantiate
the sketching unit several times to maintain entirely independent replicas and allow
symmetric throughput for data processing and state transfer.

4.5.2 Merged Updates for Column Sketches

In the case of row sketches, we can implement data parallelism more efficiently as there
is no random access required for each of the d input values. Instead of interpreting each
of the d input values by a dedicated replica, we interpret them as one single input value
and apply the update for d inputs simultaneously in the update function. As all sketches
supported by Scotch are mergeable, this can be achieved by merging the updates of the
d input values in a pipelined binary reduction and finally merging with the current state
of the sketch. For example, in AGMS, we first accumulate all +1/ − 1 updates in a binary
tree of adders, before adding the aggregate update to the current state of the sketch.
As the sketch state is not replicated, the number of state registers and the state transfer
controller remain independent of d. If the updates to merge are smaller than the overall
state (e.g., the +1/-1 updates in AGMS), merging requires less logic than d independent
updates in a replicated setup.

While this approach is more efficient in terms of resource consumption, it also requires
an update function tailored towards the specific value of d and explicitly implementing
merging in ScotchDSL. In Section 5.3, we establish a generalized framework that allows

83

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

for creating equivalent merging and update logic for arbitrary d by specifying sketch
updates in terms of user-defined map and reduce functions.

4.6 Discussion

The RTL generator relies on the structure implied by the Select-Update and Map-Apply
model to generate fully-pipelined RTL (DR4). However, the underlying models and
ScotchDSL also impose limitations on the supported algorithms. In the following, we
will discuss these limitations.

Models: The supported models fix the memory access pattern for all supported algo-
rithms, and the per-row memory is the only mechanism to store state. Each input value
results in exactly one read and write operation to the state memory. This memory access
pattern allows us to use a pipelined memory architecture that handles one read and
write operation per clock cycle and resolves data hazards. Lifting this restriction would
require us to stall the pipeline during conflicting memory operations and, thus, violate
DR4. In particular, the supported models exclude streaming algorithms that require
keeping a sorted list of values or complex data structures, such as Space-Saving [108] or
Exponential CM [118]. Furthermore, algorithms that require an evaluation of the sketch
to perform an update are not supported (e.g., CM-CU [60]).

ScotchDSL: ScotchDSL prevents for-loops with runtime dependent conditions. Support-
ing this would require us to build hardware that stalls while the loop iterates and, thus,
violate DR4. Furthermore, ScotchDSL does not support floating point interpretations of
bit vectors. Hardware support for floating-point operations is highly dependent on the
device and requires vendor-specific modules that are hard to parameterize automatically.
However, this would allow for floating-point state in already supported sketches and
enable new sketches, such as Quantile sketches [55] or DDSketch [105]. Thus, we
consider this an interesting direction for future work.

There is a well-known trade-off between flexibility, throughput, and resource con-
sumption in hardware development [151]. In Scotch, the supported models and
ScotchDSL provide enough freedom to implement popular sketching algorithms while
limiting the flexibility to preserve DR4.

4.7 Automated Tuning

Scotch uses an auto-tuning algorithm to maximize the sketch size within the provided
clock frequency constraints and resource limitations (DR2). Hence, it maximizes the

84

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

accuracy of the sketch. In a nutshell, the algorithm performs an initial compilation,
projects the maximum possible sketch size within the FPGA’s resources, and performs a
binary search to find the maximum sketch size still generating functional hardware.

Before tuning, the user fixes one of the matrix dimensions while the other is subject to
optimization. Row and column sketches inherently fix one dimension. Matrix sketches
usually have error guarantees in the form of an interval around the true value. The
number of rows m determines the probability of the estimate falling into the interval; the
number of columns n determines the interval’s size [37, 39]. While the algorithm can
optimize either dimension, a user will likely set the probability by fixing m based on the
application and let Scotch minimize the interval by maximizing n.

We base our algorithm on the following conservative assumptions:

A1: Linear Resource Consumption. We assume ELU and BRAM consumption increases
asymptotically linearly with the number of rows or columns. We use A1 to compute an
upper bound for the optimization parameter. We base the assumption on the following
observation: Increasing the number of rows results in a linear increase in the number of
compute units and state memory components. The number of 4-dispatch, 4-collect units,
and row counter bits in the State Transfer Controller grow logarithmically. Increasing the
number of columns leads to a linear increase in memory segments and DFU stages. The
number of bits required for offset registers and the number of LUTs for logic operating
on them (e.g., comparisons) grow logarithmically.

A2: Global Optimum. We assume that there is a parameter b such that all parameters
x ≤ b provide a functioning accelerator while all x > b will lead to the optimization
either failing due to timing or lack of resources. A2 justifies using a binary search.
We base the assumption on the following intuition: As established in Assumption 1,
resource consumption increases monotonically with the optimized parameter. Thus,
FPGA resources will eventually exceed. Before this is the case, placement and routing
by the toolchain, while satisfying timing, gets increasingly challenging and eventually
impossible. In particular, the maximum operating frequency for the sketching unit
decreases monotonically, which is the prevailing cause of timing failures.

Our auto-tuning algorithm consists of two steps:

Step 1: Initialization. The algorithm calls the RTL generator for an initial parameter r
and compiles the accelerator using the vendor toolchain. Scotch estimates a parameter
that exceeds 100% resource utilization and serves as a potential upper bound u. If the
compilation for r has been successful, we define the initial search interval as [r,u). If the
compilation was unsuccessful due to timing or resources, the interval is [0,min(d,u)).

85

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Optimization Parameter0

50

100
Re

so
ur

ce
 U

til
iza

tio
n

(%
)

Success

Timing Failed
Out of Resources

ELUs
BRAMs

Figure 4.10: Auto-tune optimization space. BRAM and ELU consumption increase
linearly with the optimization parameter. With an increasing optimization
parameter, compilations are first successful, then fail due to timing, and finally
fail due to a lack of resources.

Step 2: Binary Search. The algorithm performs a binary search in the interval. It
repeatedly compiles the accelerator and checks whether the compilation was successful.
As the algorithm converges, the lower bound either contains the maximum parameter
with a successful compilation or is zero if no such parameter exists.

In Scotch, we extend the basic auto-tune algorithm by following adaptations: (1)
A user may choose a relative difference between the upper and lower bound to speed
up convergence. (2) The vendor toolchains use randomized algorithms for placement
and routing. We account for their variance by trying five initial seeds for Intel Quartus
Prime before considering a parameter as failed due to timing. For Xilinx Vivado, we
vary implementation strategies for the same effect. (3) When BRAM is depleted, vendor
toolchains try to implement the remaining memory segments less efficiently using ELUs.
While only feasible if the fixed parameter is small, we double the estimated upper bound
for row and matrix sketches to account for this edge case.

4.8 Evaluation

In this section, we evaluate the RTL generator and autotune algorithm. The Scotch
system, algorithm implementations, and baselines are available in our public repository. 1

4.8.1 Experimental Setup

We implement two column sketches (n = 1), two matrix sketches, and two row sketches
(m = 1) as shown in Table 4.2. We order the three sketch types by the number of updates

1https://github.com/martinkiefer/scotch

86

https://github.com/martinkiefer/scotch

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Table 4.2: Sketching algorithms implemented

Column AGMS [4] MinHash (MH) [18]
Matrix FAGMS [37] Count-Min (CM) [39]
Row Fast-Count (FC) [152] HyperLogLog (HLL) [52]

applied to the state matrix for each input value.
We use the H3 family [123] for hashing values into arbitrary integer range in CM,

FAGMS, MH, and HLL. For FC, we use an adaptation of the Polynomials-over-Primes
scheme with a Mersenne Prime [123] to obtain a 4-wise independent hash function. For
AGMS and FAGMS, we use the EH3 family for +1/-1 hashing [128]. We implement all
algorithms for 32-bit input values. The state values for HLL are 6 bits wide; all other
algorithms use 32-bit states.

Intel FPGA (A10, S10): We generate accelerators for two different Intel FPGA models:
A midrange model (A10, Arria 10 GX 1150) and a high-end model (S10, Stratix 10 GX
2800). We use Intel Quartus Prime 19.3 as the vendor toolchain and Intel’s Early Power
Estimator to compute the power consumption.

Xilinx FPGA (XUS+, XUS): We generate accelerators for a recent Xilinx UltraScale+
FPGA (XUS+, XCVU7P) and an UltraScale FPGA (XUS, XCVU440). We use Vivado
v2020.01 as the vendor toolchain.

CPU (Xeon): We run the algorithms on a server with two Intel Xeon Silver 4214 CPUs,
each providing 24 hyper-threads. We use GCC 7.5 with OpenMP and vectorization com-
piler intrinsics (AVX512). We measure power consumption using powerstat 0.02.22 [91].

GPU (GeForce): We run the algorithms on a graphics card with an Nvidia GeForce RTX
2080 GPU using CUDA 10.2. We measure the power consumption using the nvidia-smi
tool provided by CUDA.

FPGA accelerators use a minimal I/O template to focus on the performance of the
sketching units in isolation. We use merged updates for column sketches if not stated
otherwise. Our CPU and GPU baselines are hand-optimized, data-parallel, and fully
utilize the architecture’s parallelism. Measurements were taken on a machine running
Ubuntu 18.04 for 20 iterations. We used a 2 GB uniform data set residing in main memory
for the CPU and device memory for the GPU.

87

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

4.8.2 RTL Generator

We investigate the scaling behavior of the generated accelerators in terms of resource
consumption and maximum operating frequency. For the sake of readability, we restrict
to matrix sketches with m = 8. We vary the matrix size used by the RTL generator and
compile with five different compilation seeds. We report the results for A10 as it has the
lowest compile times (4-20x compared to S10) due to fewer resources and, thus, allowed
for a more fine-grained analysis of the parameter space. Experiments for S10 and XUS+
have shown similar results and did not provide additional insights.

Resource Consumption

We investigate the resource consumption of generated sketching units for varying matrix
sizes and data parallelism degrees d = 1 and d = 4. In particular, this allows us to
validate that resource consumption increases linearly with the number of rows and
columns (A1). Throughout all experiments, the number of BRAM blocks consumed is
precisely the number of blocks assigned for the state memory. The ELU consumption
for all algorithms is given in Figure 4.11. As ELU consumption varied under 0.01%
for different seeds, we only report the maximum value. Overall, we observe that ELU
consumption is approximately linear for all algorithms and both degrees of parallelism.
Increasing the degree of data parallelism leads to a roughly proportional increase in
resource consumption. For the column sketches shown in Figure 4.11a, we see that MH
has up to 6 times higher ELU consumption, which is due to a more involved update
function. For matrix sketches in Figure 4.11b, FAGMS variants show up to 30% higher
ELU consumption than CM sketches due to more complex update logic. For the row
sketches in Figure 4.11c, we observe HLL supporting much larger summary sizes, which
is due to its smaller state. Neither matrix nor row sketches exceed 55% ELU utilization,
as BRAM blocks are the dominating resource.

Summary: The experiment confirms that resource utilization is linear (A1). We
observe that data parallelism comes at the cost of higher resource consumption.

Maximum Operating Frequency

Next, we investigate the impact of the state matrix size on the maximum operating
frequency. As a low maximum operating frequency is the prevailing cause for failed
timing, this experiment allows us to validate A2 of the auto-tuning algorithm. The
maximum operating frequency varied by up to 110 MHz for different compilation seeds;
therefore, we report the maximum over five runs.

88

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

0 5000 10000
Rows m

0

20

40

60

80

100
EL

Us
 (%

)

AGMS (d=1)
AGMS (d=4)
MH (d=1)
MH (d=4)

(a) Column

0K 50K 100K 150K
Columns n

CM (d=1)
CM (d=4)
FAGMS (d=1)
FAGMS (d=4)

(b) Matrix

0K 2000K 4000K
0

50

100
HLL (d=1) (d=4)

0K 500K 1000K
Columns n

0

50

100
FC (d=1) (d=4)

(c) Row

Figure 4.11: ELU consumption for various sketching units

Figure 4.12 shows the results. We observe that the maximum operating frequency
decreases with a growing state matrix for all variants. However, it does not decrease
strictly monotonically due to remaining variance. Almost all algorithms show a lower
frequency for d = 4 consistent with the increased resource consumption. In Figure 4.12a,
we see MH being the only exception to this, which we consider a toolchain artifact. We
see that AGMS operates at an up to 200 MHz higher clock frequency than MH due to its
simpler merged update function. For the matrix sketches shown in Figure 4.12b, we see
operating frequencies between 400 and 600 MHz. Both algorithms decrease in a similar
L-shaped pattern. For row sketches shown in Figure 4.12c, we observe HLL starting at a
higher frequency of up to 763 MHz due to the significantly smaller state. FC starts at
500 MHz, decreases flatly, and shows drops of more than 120 MHZ for the largest sizes,
indicating that its arithmetic-based hash function has become harder to place and route.

Summary: As the experiments confirm a trend towards a decreasing maximum
operating frequency, A2 of the auto-tune algorithm is justified. While the algorithm may
miss the global optimum due to remaining variance, it is an efficient alternative to a
prohibitively expensive exhaustive search.

Impact of theMerged Updates

Finally, we conduct experiments investigating the benefits of merged updates for column
sketches incorporating data parallelism. Figure 4.13 compares merged updates to
replication for column sketches and a data parallelism degree of four. In terms of ELU
consumption, we see that AGMS benefits most from merged updates, allowing for
implementations that consume only half the resources and, thus, for a more than twice

89

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

0 5000 10000
Rows m

300

400

500

600

700

M
ax

. C
lo

ck
 R

at
e

(M
Hz

) AGMS (d=1)
AGMS (d=4)
MH (d=1)
MH (d=4)

(a) Column

0K 50K 100K 150K
Columns n

300

400

500

600

700
CM (d=1)
CM (d=4)
FAGMS (d=1)
FAGMS (d=4)

(b) Matrix

0K 2000K 4000K
500
750

HLL (d=1) (d=4)

0K 500K 1000K
Columns n

500

750
FC (d=1) (d=4)

(c) Row

Figure 4.12: Max. clock frequency for various sketching units

0 1000 2000 3000 4000 5000 6000 7000
Rows m

0

20

40

60

80

100

EL
Us

 (%
)

M-AGMS (d=4)
R-AGMS (d=4)
M-MH (d=4)
R-MH (d=4)

0 1000 2000 3000 4000 5000
Rows m

300

400

500

600

700
M

ax
. C

lo
ck

 R
at

e
(M

Hz
) M-AGMS (d=4)

R-AGMS (d=4)
M-MH (d=4)
R-MH (d=4)

Figure 4.13: Comparison of merged updates (M) and replication (R) for data
parallel accelerators

as high maximum number of columns. MH shows a smaller improvement of 25% due
to the more expensive update logic that reduces the positive effect of shared resources in
merged updates. Merged updates also show a positive impact in terms of the maximum
operating frequency. The technique results in an up to 80 MHz improved frequency for
AGMS and an up to 60 MHz improved frequency for MH.

Summary: Merged updates offer improved ELU efficiency and operating frequencies
for data-parallel accelerators.

4.8.3 Automated Tuning

In the second set of experiments, we evaluate the performance of accelerators found by the
auto-tuning algorithm in terms of summary size, throughput, and energy consumption.
We generated accelerators for operating frequencies of 300, 400, and 500 MHz. Tuning

90

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

0K 20K

300 Mhz
d = 1 | 400 Mhz

500 Mhz
300 Mhz

d = 4 | 400 Mhz
500 Mhz
300 Mhz

d = 16 | 400 Mhz
500 Mhz

AGMS

0K 5K
Rows m

300 Mhz
d = 1 | 400 Mhz

500 Mhz
300 Mhz

d = 4 | 400 Mhz
500 Mhz
300 Mhz

d = 16 | 400 Mhz
500 Mhz

X

X

X

X

X

MH

S10
XUS+
A10

(a) Column

0K 100K

X

X

X

X

X

FAGMS (m=32)

0K 500K

X

X

X
X

FAGMS (m=8)

0K 100K
Columns n

X

X

X
X

CM (m=32)

S10
XUS+
A10

0K 500K
Columns n

X

X

CM (m=8)

S10
XUS+
A10

(b) Matrix

0K 20000K

HLL

0K 4000K
Columns n

X

X

X

X

FC

S10
XUS+
A10

(c) Row

Figure 4.14: Summary sizes for FPGA accelerators on varying target devices with
varying operating frequencies

starts with an initial parameter of 16 and stops at a relative difference of one percent.
Tuning took between two hours and a week for A10, between four hours and six days
for XUS+, and between one day and two weeks for S10.

Summary Size

First, we present the summary sizes found for the generated accelerators. This experiment
allows us to showcase the effects of different target clock rates, degrees of parallelism,
and device types for the generated sketches on the summary size.

Figure 4.14a shows the results for column sketches. We see that all devices are capable
of generating accelerators at all operating frequencies for AGMS. For MH, with its more

91

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

involved select and update function, summary sizes are between three and 49 times
smaller. 500 MHz accelerators are either not possible for S10 and A10 or have less than
five counters, while summary sizes for XUS+ are less affected by the increased frequency.

Figure 4.14b shows the results for matrix sketches. We observe that both algorithms
perform similarly for the same number of rows as FAGMS and CM only differ in their
update function. Decreasing the number of rows from m = 32 to m = 8 results in a
roughly proportional increase of the summary size. As BRAM blocks are used, timing
behavior for XUS+ changes as indicated by 500 MHz accelerators barely being possible.
However, for 300 and 400 MHz, XUS+ even provides throughput competitive to S10.
Figure 4.14c shows the results for row sketches. For HLL, we see S10 providing the
largest summary sizes by up to a factor of 12. However, for FC, we see XUS+ providing
up to 6.5 times larger summary sizes for d = 1 and d = 4 at 300 and 400 MHz. This
observation suggests that XUS+ is better at implementing large rows with a 32-bit state
than the other devices.

Overall, we see that increasing the degree of data parallelism always results in a
decreasing maximized parameter. The decrease is not always proportional due to the
effects of the target operating frequency. Increasing the operating frequency usually
leads to a smaller parameter, especially when comparing 400 and 500 MHz.

Summary: We see that the maximum summary size varies strongly depending on
the algorithm, FPGA, target operating frequency, and parallelism degree. This shows
the auto-tuning algorithm tailoring the summary size to the setup.

Throughput

Next, we investigate our accelerators’ throughput compared to a state-of-the-art CPU
(Xeon) and GPU (GeForce). For the sake of brevity, we report on the larger S10 and XUS+
devices operating at 400 MHz. Our accelerators’ throughput is f · d · 32 due to a static
processing rate f .

Figure 4.15a shows the results for the column sketches. We see that our FPGA
accelerators outperform the Xeon and GeForce baseline in all cases. Even the more
competitive GeForce baseline shows an improvement ranging between a factor of 17
and 122 for AGMS and a factor of 13 to 60 for MH. FPGAs fully leverage their potential
for column sketches: We generate hardware that updates tens of thousands of counters
every clock cycle. CPU and GPU implementations need several cycles for an update and
can not adjust all counters simultaneously due to limited parallel compute resources.

Figure 4.15b shows the results for CM with 8 and 32 rows as a representative for

92

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

S10,d=1

S10,d=4

S10,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

0.23

0.48

1.66

0.12

0.24

0.79

m = 23927

m = 11876

m = 3615

AGMS
12.80

51.20

204.80

0.55

1.74

15.24

0.06

0.17

1.48

m = 3079

m = 977

m = 111

MH

0 100 200 300
Throughput (gbps)

XUS+,d=1

XUS+,d=4

XUS+,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

0.54

1.83

4.80

0.26

0.90

2.25

m = 10968

m = 3171

m = 1236
0 100 200 300

Throughput (gbps)

12.80

51.20

204.80

0.50

1.93

7.59

0.05

0.19

0.75

m = 3438

m = 885

m = 223

(a) Column

S10,d=1

S10,d=4

S10,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

33.46

33.74

38.20

2.25

3.40

3.48

n = 131072

n = 44544

n = 10752

CM (m=32)
12.80

51.20

204.80

116.33

132.49

138.80

3.84

7.83

13.97

n = 463360

n = 131072

n = 43008

CM (m=8)

0 100 200 300
Throughput (gbps)

XUS+,d=1

XUS+,d=4

XUS+,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

33.56

33.30

38.71

3.13

3.45

3.54

n = 77824

n = 24576

n = 4096
0 100 200 300

Throughput (gbps)

12.80

51.20

204.80

101.26

133.14

139.40

3.67

8.28

14.23

n = 507904

n = 118784

n = 32768

(b) Matrix

S10,d=1

S10,d=4

S10,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

30.56

34.69

59.14

11.08

12.97

25.47

n = 23818240

n = 5957632

n = 1490944

HLL
12.80

51.20

204.80

48.06

274.91

936.82

30.77

33.86

43.35

n = 2201088

n = 757248

n = 236544

FC

0 250 500 750 1000
Throughput (gbps)

XUS+,d=1

XUS+,d=4

XUS+,d=16

GeForce

GeForce

GeForce

Xeon

Xeon

Xeon

12.80

51.20

204.80

33.04

48.64

690.53

12.22

18.88

45.05

n = 8359936

n = 2129920

n = 557056
0 500 1000 1500

Throughput (gbps)

12.80

51.20

204.80

37.45

103.63

1126.91

30.07

32.41

41.23

n = 4153344

n = 1040384

n = 290816

(c) Row

Figure 4.15: Throughput for FPGA accelerators compared to Xeon and GeForce
baselines

93

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Table 4.3: Power consumption in Watt for 100 Gbit/s accelerators (S10,
390.625 MHz, d = 8) compared to baselines

Sketch S10 Xeon GeForce Size

AGMS 33.05 152.79 184.32 n=1, m=6288
CM 69.85 176.62 213.99 n=84992, m=8
HLL 50.48 145.91 124.06 n=2981888, m=1

matrix sketches. We omit FAGMS as the results barely differ. Compared to our Xeon
implementations, we see that all FPGA accelerators outperform it. For the GeForce
baseline, we see a more competitive throughput: For m = 32, S10 and XUS+ need a
data parallelism degree d = 4 to provide a clear advantage. For m = 8, the throughput
provided by GeForce increases by a factor of four as the total amount of computations
per input value has decreased by the same factor. However, the device can not achieve
this throughput (entire bar) in practice, as PCIe poses a data transfer bottleneck and
limits the processing throughput (filled bar). With a data parallelism degree of d = 16,
the FPGA accelerators outperform GeForce by a factor of up to 2.6 considering PCIe
and 10 to 40% when input data resides in device memory. FPGAs support various
interconnects, allowing them to overcome transfer bottlenecks [151].

Figure 4.15c shows the results for row sketches. As before, FPGA accelerators with
d = 16 are sufficient to outperform GeForce. When disregarding the PCIe bottleneck, we
see two cases: For n < 700k, GeForce provides throughput up to an order of magnitude
above the transfer bandwidth as only one update per data item is performed. For higher
n, throughput decreases drastically due to cache misses.

Summary: The experiments show that automatically tuned FPGA accelerators can
outperform software implementations on parallel architectures in many cases. For matrix
and row sketches, data parallelism is essential to outperform a GPU.

Power Consumption

Next, we evaluate the power consumption of our sketching accelerators. We generate
accelerators on Stratix 10 for AGMS, CM with m = 8, and HLL as representatives for
column, matrix, and row sketches for 100 Gbit/s throughput (390.625 MHz, d = 8). We
compare the power consumption to our CPU and GPU baselines at peak throughput.
Measurements are obtained using software and do not include periphery.

Table 4.3 shows the results. We find FPGA accelerators consume between 2.5 and 5.6
times less energy than Xeon and GeForce.

94

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

Table 4.4: Scotch compared to [154] for CM (XUS, m = 5, d = 1)

Implementation Operating Freq. Throughput Columns n

Hand-Written [154] 497 MHz 15.9 gbps 216

Scotch 503 MHz 16 gbps 217

Summary: The experiment shows that FPGA accelerators consume significantly less
power than the CPU and GPU baselines.

4.8.4 Comparison to Hand-Written RTL

Finally, we compare Scotch to a state-of-the-art hand-written sketching implementation.
Tong and Prasanna implemented CM sketching on XUS [154]. Their sketching approach
is comparable as they guarantee static data rates and utilize a pipelined memory
architecture with a DFU and d = 1. We compare their reported operating frequency,
throughput, and summary size to a Scotch accelerator generated with the same FPGA
and operating frequency. Table 4.4 shows Scotch found an implementation with twice as
many columns.

Summary: Scotch competes with a manual implementation.

4.9 RelatedWork

Accelerating the construction of sketch summaries and their applications on FPGAs
has been proposed in previous work. Our approach is related to the work of Tong
and Prasanna, who used FPGAs for online heavy hitter and change detection in high
throughput networks [154]. They implement CM sketching with guaranteed data rates
using pipelined memory and a data forwarding unit. As shown in Section 4.8.4, our
accelerators can operate at the same frequency and throughput for a data parallelism
degree of one. However, we can provide even higher throughput by exploiting data
parallelism. Other streaming algorithms implemented on FPGAs are Space Saving [150],
Exponential CM [32], CM-CU [130], MinHash [139], and Bloom Filters [30].

High-level synthesis tools such as OpenCL [28, 41, 164] or VivadoHLS [51] allow
for the generation of accelerators from C-like programming languages. While these
frameworks are general-purpose and have been successfully applied in database ac-
celeration [161, 162], Scotch exploits knowledge about the memory access pattern and
semantics defined by the select-update model to provide fully pipelined sketching RTL;
the tuning process is automatic, given a matrix size and user-defined functions. However,

95

Chapter 4. Scotch: A Holistic Approach to FPGA-Accelerated Sketching

high-level synthesis tools can reduce the development effort and expertise required to
develop I/O templates for Scotch.

Previous research has suggested automated tuning of toolchain and user parameters
towards an objective function [20, 93]. It treats RTL and optimization parameters as a
black box and, thus, requires general models and sufficient training. Scotch’s automated
tuning algorithm uses intuitive assumptions based on domain knowledge to optimize
for the summary size using a practical approach that is logarithmic in the search space.

4.10 Conclusion

In this chapter, we introduced Scotch, a novel system for generating optimized sketching
accelerators on FPGAs. It provides a full system stack covering all aspects, from sketch
specification over code generation to automated tuning.

We evaluated Scotch for six sketching algorithms and three different FPGAs. We
showed that Scotch tailors the summary size to the desired throughput and FPGA. We
highlighted the inherent trade-off between throughput and summary size controlled
via the operating frequency and degree of parallelism. We found that the accelerators
can satisfy interconnects with a bandwidth of 100 Gbit/s and more. Scotch accelerators
outperform CPU baselines by a factor of up to 300 in terms of throughput and by a
factor of up to 4.6 in terms of energy consumption. Compared to a GPU baseline,
FPGA accelerator throughput ranges from competitive to an improvement of a factor of
120 while consuming up to 5.6 times less energy. Furthermore, we found that Scotch
accelerators compete with a manual FPGA implementation.

Overall, this work shows that Scotch produces highly efficient FPGA sketching
accelerators without manual RTL programming and tuning. Thus, Scotch substantially
lowers the entry bar for FPGA accelerated sketching by replacing an FPGA expert with
code generation and automated tuning.

96

5
Optimistic Data Parallelism for

FPGA-Accelerated Sketching

The architecture for FPGA-accelerated sketching introduced in the previous chapter
implements data parallelism via replication. This chapter proposes an optimistic architec-
ture that trades the hard processing guarantees provided by full replication for improved
resource utilization by sharing resources among the processing logic for each input. We
show that such an architecture is feasible and introduce techniques to avoid stalls due to
resource congestion. Furthermore, we show that the larger summary sizes enabled by
optimistic architectures translate to substantial gains in accuracy for an approximate
query processing application.

This chapter is mainly based on our publication ’Optimistic Data Parallelism for
FPGA-Accelerated Sketching’ [90].

5.1 Introduction

The previous chapter on Scotch highlights that achieving high throughput for FPGA-
based sketching accelerators particularly requires exploiting data parallelism. Scotch [89]
and other recent approaches to FPGA-accelerated sketching [29, 92] implement data
parallelism pessimistically by replicating the sketching hardware for each of the inputs
and, thus, entirely avoiding concurrent accesses to state memory. However, while
replication guarantees the desired throughput, it also increases resource consumption
proportionally to the number of inputs. In particular, we identified state memory as the

97

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

bottleneck of pessimistic architectures in Section 4.8.2. Thus, pessimistic data parallelism
severely restricts sketch sizes and FPGA resources available to other functionalities, such
as additional sketches.

This chapter proposes a novel optimistic architecture for FPGA-accelerated sketching
with an improved trade-off between throughput and BRAM consumption. It makes the
scarce state memory concurrently available to all input values instead of replicating it.
As this architecture stalls to resolve resource conflicts in the presence of data skew, it
does not guarantee constant processing rates (DR4, Section 4.2.1). However, we show
how to exploit temporal locality to merge multiple updates into a single transaction and,
thus, avoid stalling by reducing congestion.

In summary, we make the following contributions:

1. We propose a novel optimistic sketching architecture. Our architecture partitions
the sketch state into independent banks available to all inputs, thus, implementing
parallelism while reducing the consumption of the scarce state memory.

2. We propose merging techniques that mitigate resource congestion due to data
skew by exploiting temporal locality.

3. We discuss and evaluate the impact of architecture parameters on resource utiliza-
tion. Furthermore, we discuss the limitations of our optimistic architecture.

4. We implement FPGA-accelerated sketching on a Xilinx U250 FPGA data center
accelerator for an approximate query processing application. We show that the
optimistic architecture outperforms state-of-the-art CPU and GPU implementations’
throughput while larger summary sizes boost accuracy.

To the best of our knowledge, this is the first work that performs FPGA-accelerated
sketching for a general class of sketches in an optimistic architecture.

The following Section 5.2 describes our novel optimistic banked sketching archi-
tecture, while Section 5.3 presents our techniques to mitigate resource congestion.
Sections 5.4 and 5.5 discuss the impact of different architecture parameters on resource
utilization and the limitations of our architecture, respectively. Section 5.6 describes
an application for optimistic FPGA-accelerated sketching, and Section 5.7 presents
our experimental evaluation. Finally, we discuss related work in Section 5.7 before
concluding in Section 5.9.

98

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

v1
vd
...

v1
vd
...

Compute Unit
Row 1,
Bank 1

Row 1,
Bank b

State Memory

State Memory

Compute Unit

...
...

...

...

Row m,
Bank 1

Row m,
Bank b

State Memory

State Memory
...

ready

Figure 5.1: Optimistic data parallel sketching unit

Select

Dispatch

DFUMemory
Read

Memory
WriteUpdatev1

Selectvd

ready

DFUMemory
Read

Memory
WriteUpdate

DFUMemory
Read

Memory
WriteUpdate

...
Bank 1

Bank b

Frontend Backend

Figure 5.2: Optimistic compute unit architecture

5.2 Banked Sketching Architecture

In this section, we introduce our novel optimistic banked sketching architecture. Unlike a
pessimistic architecture, the banked architecture makes the same state memory available
to the processing logic of all d inputs simultaneously. Thereby, it reduces resource
consumption for state memory by a factor of d, freeing resources for large sketch sizes,
additional sketches, or other logic. However, it can also introduce stalls in case of
congestion and thus requires additional logic to implement conflict resolution.

The banked sketching architecture maintains the sketch state in b pipelined banks,
each serving a range of offsets. Figure 5.1 provides an overview of an optimistic sketching
unit with multiple banks. Instead of processing each input value in a dedicated replica
of the sketching unit, the same sketching unit processes all d input values. The per-row
compute units calculate the d corresponding offsets and update the state in the offset’s
corresponding bank. As each bank processes one input value per clock cycle, conflicting
accesses to the same bank require the compute unit to serialize operations and eventually
stall the processing of further values.

99

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

5.2.1 Compute Unit Architecture

Figure 5.2 shows the optimistic compute unit architecture. It contains a select unit for
each of the d input values that evaluates the select function. We refer to this part of the
architecture as the frontend. A dispatcher connects the inputs to the corresponding banks,
stalls the pipelines for conflict resolution, and signals stalls to the overall sketching unit.
Each of the b banks consists of an independent set of stages: The memory read stage
retrieves the state for a given offset, the update function computes the next state, and
the memory write stage issues a write request to persist newly computed state. As
reading and writing from memory incurs multiple cycles of latency, a data-forwarding
unit (DFU) tracks updates. It ensures that no updates are lost before a state value enters
the update stage. We refer to all stages behind the dispatcher as the backend.

Except for the dispatcher, all stages are also present in a pessimistic architecture.
Note, however, that only the select and update stages are fully replicated for each input
value and bank, respectively. The overall number of substages in the read, write, and
DFU stage depends on the number of segments in the state memory and, thus, only
depends on the size of the sketch matrix — but not on the number of inputs d or banks b.

The dispatcher arbitrates the d incoming offset-value pairs and follows the architecture
in Figure 5.3. First, a b-dispatch unit dispatches the pair to the corresponding bank based
on the offset. A FIFO queue qi, j buffers the offset-value pair assigned to bank i for input j.
Since there is at most one new value per queue in each clock cycle and input, we can use
the efficient FIFO queue building blocks shipped with vendor toolchains. A d-collect
unit for each bank arbitrates conflicts by popping one element from a queue in each
clock cycle in a round-robin fashion and forwards the element to its corresponding bank
in the backend. If at least one queue in a dispatcher is full, the entire sketching unit
stalls to avoid a potential loss of input data. Accordingly, the dispatcher signals a stall to
the compute unit frontend. The compute unit signals a stall for its row to the overall
sketching unit, which in turn signals a stall and stops accepting new input values.

5.2.2 Stall Rate

Given a fixed degree of data parallelism d, the banked architecture has two parameters:
The number of banks b and the queue size qs. We will discuss the impact of parameters
in terms of the stall rate, which is the fraction of clock cycles lost due to stalls. Choosing
b < d eventually causes the architecture to stall when values arrive at each clock cycle.
As the architecture can only process b values during each clock cycle in the backend, the
stall rate will be at least 1 −

b
d . Based on the above observation, we propose two versions

100

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

b-dispatch

b-dispatch

d-collect

FIFO queuesFrontend

d-collect

q1,1

q1,2

q2,2

q2,1

Backend

(offset, value)1

(offset, value)2

ready

(offset, value)1

(offset, value)2

Dispatch

Figure 5.3: Dispatcher architecture

of the banked architecture that are physically capable of processing as many values as
the pessimistic architecture: First, the regular architecture with b = d has the minimum
number of banks for d inputs. Second, the oversubscribed architecture with b = d · 2 can
process twice as many elements in the backend as the architecture can ingest. While this
strategy doubles the number of connections and queues in the dispatcher, it potentially
takes pressure off individual queues. We assume, without loss of generality, that d is a
power of two as I/O interfaces commonly provide data at this granularity. Consequently,
the number of banks b is a power of two, which drastically simplifies assigning offsets to
banks in hardware.

Given these two architectures, the stall rate depends on the number of inputs, banks,
queue size, and offset distribution. In the rest of this section, we study their properties in
more detail.

Uniform Bank Access

When accesses to the banks are uniform, queues prevent stalls due to random collisions.
Figure 5.4a shows the impact of the queue size on the stall rate for a sketch with a
single row and varying d on uniform offsets. We see stall rates approaching zero with
increasing queue sizes for both architectures as the additional buffering suffices to
prevent stalls due to offsets colliding on banks randomly. Most importantly, the regular
architecture requires larger queues than the oversubscribed architecture for low stall
rates. To reach stall rates below 1% for all values of d, the regular architecture requires a
FIFO queue with qs = 512 entries, while qs = 16 suffices to prevent stalls completely in an
oversubscribed architecture. As oversubscribed architectures can process twice as many
input values simultaneously in the backend than arrive from the frontend, pressure on

101

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

21 25 29

Queue Size
0.0
0.2
0.4
0.6
0.8
1.0

St
al

l R
at

e
Regular

21 23 25

Queue Size

Oversubscr.
d=4
d=8
d=16
d=32

(a) Uniform, m = 1 rows, varying
inputs d

2123252729

Queue Size
0.0
0.2
0.4
0.6
0.8
1.0

St
al

l R
at

e

Regular

21 23 25 27

Queue Size

Oversubscr.
m=1
m=4
m=16

(b) Uniform, d = 16 inputs, vary-
ing rows m

21 23 25 27 29

Queue Size
0.0
0.2
0.4
0.6
0.8
1.0

St
al

l R
at

e

Regular

21 23 25 27

Queue Size

Oversubscr.
d=4
d=8
d=16
d=32

(c) Zipf ρ = 1.1, m = 1 rows, vary-
ing inputs d

Figure 5.4: Simulated stall rates in a banked architecture

individual queues reduces, leading to smaller queues sufficing for low stall rates. While
oversubscribed architectures contain twice as many queues, the accumulated queue size
for the overall architecture remains 16 times smaller.

Impact ofMultiple Rows

For m > 1 rows, the per-row sketching units process the input values independently,
but stalls required by an individual row allow all other rows to reduce the number of
buffered elements as well. Figure 5.4b shows the stall rates for a banked architecture with
d = 16 and m ∈ {1, 4, 16} rows for a uniform offset distribution. Although the probability
of at least one row signaling a stall grows exponentially in a fully independent system,
the dependent stalls in our architecture only lead to a moderate increase in the stall rate.

Skewed Bank Access

If there is skew in the distribution of accessed banks from the backend, e.g., due to heavy
hitters and skewed data distributions, the stall rate can go up as high as 1 −

1
d when

all offsets target only one bank. Both architectures cannot sustain the full processing
rate if a bank receives more than 1

d requests from the frontend, that is, more than one

102

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

request per clock cycle on average. This implies that the regular architecture can only
avoid stalls when the bank access pattern is uniform. The oversubscribed architecture
tolerates moderate skew as the abundance of banks does not require all banks to operate
at full capacity to avoid stalls.

Figure 5.4c shows the stall rates for a moderately skewed Zipfian distribution with
support ρ = 1.1. For the regular architecture, we see that stall rates vary between 16 and
90% and find that queuing alone is not sufficient to mitigate the impact of skew. For the
oversubscribed architecture with d ∈ {4, 8}, we find that it indeed substantially mitigates
the impact of data skew and achieves a stall rate of less than 2%, given a sufficient queue
size. For d ∈ {16, 32}, the absolute improvement compared to the regular architecture is
between 10 and 30% given a sufficient queue size, but we still observe stall rates of more
than 25%. Furthermore, the skewed distribution requires a four times larger queue size
qs = 64 for the stall rates to converge in an oversubscribed architecture.

Based on this analysis, we conclude that dealing with heavy hitters and skewed
access to banks requires additional solutions. We thus devise techniques that can exploit
the properties of sketching algorithms to counter skew.

5.3 Merging in the Dispatcher

Preventing stalls in a banked architecture means either (1) increasing the number of
elements popped from queues in each clock cycle or (2) reducing the number of elements
pushed into the queues. In the following, we will discuss how we trade additional
logic in the dispatcher for fewer stalls in the presence of heavy hitters and data skew
by exploiting temporal locality. The fundamental approach is to merge the updates for
input values affecting the same offset before dispatching them to the banks.

As the Select-Update model does not provide an appropriate interface to merge
updates, we first establish the theoretical framework by describing the update function
in terms of a map and a reduce function. Second, we introduce two mechanisms to
reduce stalls by merging updates as shown in Figure 5.5: Vertical merging extends the
d-collect unit with logic to merge updates from the individual queue heads. Horizontal
merging buffers updates at each input as a first processing step in the dispatcher.

5.3.1 Map-Reduce Updates

We specify the update function in terms of a map and reduce function. Intuitively, the
map function translates the input value to an increment, while the reduce function allows
us to merge increments either with other increments or the state in the sketch matrix.

103

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

vertical
merger

FIFO queuesFrontend

vertical
merger

Backend

(offset, increment)1

(offset, increment)2

ready

horizontal
merger

horizontal
merger

(offset, increment)1

(offset, increment)2

Dispatch

b-dispatch

b-dispatch

q1,1

q1,2

q2,2

q2,1

Figure 5.5: Dispatcher architecture. There is one horizontal merger per input and
one vertical merger per bank.

Formally, an update is defined as:

upi (val, state) = reducei
(︁
mapi (val) , state

)︁
(5.1)

In addition to the above definition, we require the reduce function to be associative and
commutative. This enables the reduce function to merge increments from any position
in the input stream and out of order. Furthermore, we require an identity element to the
reduce function that we can assert for inactive inputs.

As pessimistic data parallelism requires mergeability of sketches and the Select-
Update model implies that entries in sketches are updated and merged independently,
the Map-Reduce model does not impose additional restrictions on our approach.

We evaluate the map function concurrently to the select function, and the computed
increment replaces the value as an input to the dispatcher. The update stages in the
backend reduce the increment and the current state. However, the properties of the
reduce function allow merging any two increments belonging to the same offset, which
we exploit to reduce congestion for heavy hitters.

Example (CM): Updates to the CM sketch can be described in terms of a map and
reduce function. We define the map function as mapi : t ↦→ 1 and the reduce function
as reducei : x, y ↦→ x + y. Thus, every incoming value contributes an increment of one,
and the reduce function adds the increment to the state. The identity increment for the
reduce function is zero.

The reduce function allows merging increments that affect the same offset as shown
in Figure 5.6. The offset of the least recent offset-increment pair is compared with the
three following pairs. Increments with matching offsets enter the reduce function to be

104

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

Offset (Select)

Increment (Map)

Reduce

Reduce

Identity

Figure 5.6: Map-Reduce merging for a CM sketch

merged. Non-matching increments contribute the identity element. Finally, we reduce
the merged increment with the current state of the matrix at the given offset. Overall,
processing three values incurs only one update to the row due to increment merging.

5.3.2 VerticalMerging

Vertical merging pops and merges increments with matching offsets from all queues
belonging to the same bank. To this end, the vertical merger enhances the d-collect unit
in the banks. As vertical merging occurs behind the FIFO queues, the mergers operate
even if the architecture is stalled and contribute to ending stalls.

Figure 5.7 shows the architecture of a vertical merger. In addition to removing queue
elements one by one in a round-robin fashion, we also check the heads of all other queues
for offsets matching the currently selected one. This functionality is implemented as an
additional stage that performs a compare-forward operation based on the offset in the
currently selected queue. We pop all queues sharing the selected offset in their head
and forward to the next stage. The heads of all other queues remain untouched, and
the identity increment is forwarded. A pipelined binary tree of reducers merges the
increments in the following stages. After merging, the vertical merger sends the result to
its bank.

Adding vertical merging to the architecture requires implementing additional b(d− 1)
reducers and b · d compare-forwards for each compute unit. The reduction potential for
vertical merging depends on the queue heads sharing the current offset. In the best case,
all queues have increments with the same offset at their head, and d increments collapse
into one increment. In the worst case, all queues are empty or have different offsets at
their heads, and vertical merging behaves like the regular d-collect.

105

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

qi,1

qi,2

qi,3

qi,4

offset-select

cmp-fwd

cmp-fwd

cmp-fwd

cmp-fwd

(offset, increment)
to bank

setup stage merge stage merge stage

reduce

reduce

reduce

Figure 5.7: Vertical merging with d = 4 input values

5.3.3 HorizontalMerging

Horizontal merging buffers increment-offset pairs and merges them with matching
offsets. Each of the d parallel inputs has one horizontal merger that directly consumes
values arriving in the dispatcher. As horizontal mergers operate in front of the queues,
they must obey stalls requested by the architecture. Thus, they help to prevent stalls but
cannot contribute to ending stalls.

Figure 5.8 shows the architecture of a horizontal merger. All values pass through a
chain of h registers that buffer the last h values as a look-ahead. The merger compares
the last offset in the chain with all previous stages in compare-forward logic. If the
offsets are equal, the increment in the register is forwarded, while the identity increment
replaces the increment in the register. Otherwise, the identity increment is forwarded,
and the register remains untouched. In the following stages, a binary tree of reducers
merges all increments from the compare-forward units and the increment from the last
stage. Finally, the horizontal merger forwards the result to the b-dispatch logic.

Adding horizontal merging to the architecture requires d · (h − 1) additional reducers
and d · (h − 1) compare-forwards for a given look-ahead h ≥ 2. The reduction potential
depends on the number of entries in the register chain that share the same offset. In the
best case, all entries share the same offset, and h values reduce to a single increment.
However, the horizontal merging logic will run with reduced efficiency in the following
cycles as the shift register fills with new values. In the worst case, no merge occurs, and
all h elements enter the queue sequentially. As the look-ahead h controls the number of

106

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

(offset, increment)
to b-dispatch

(offset, increment)

sh
ift

setup stage merge stage merge stage

o2

o1

o3
o4

i2

i1

i3
i4

cmp-fwd
reduce

reduce

reduce

cmp-fwd

cmp-fwd

Figure 5.8: Horizontal merging with look-ahead h = 4

reducers in horizontal mergers, we can apply horizontal merging in a more fine-grained
fashion than vertical merging.

5.3.4 Discussion

Merging techniques aim at avoiding stalls resulting from full queues. To prevent
full queues, mergers must ensure that at most 1

d values result in accesses to the same
bank, as only one value per bank can retire in each clock cycle. If a single heavy
hitter appears exclusively on all d inputs, we have to be able to merge at least d such
offset-increment pairs per clock cycle on average. Thus, making an optimistic banked
sketching architecture resilient against this pathological case requires applying either
vertical merging or horizontal merging with a look-ahead h ≥ d.

Note that merging does not adversely impact stall rates or throughput: Merging
optionally allows increment-offset pairs to take effect earlier, but it does not impair other
pairs’ progress through the pipeline. Furthermore, the associativity and commutativity
of the reduce function guarantee the correctness after merging.

While we can establish that banking favors a uniform distribution of accesses to
banks and merging effectiveness increases with the frequency of heavy hitters, the actual
effect of merging is highly dependent on the distribution of offsets. Thus, we examine the
effect of merging techniques in Section 5.7.1, where we provide an extensive evaluation
on various real-world and artificial datasets.

107

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

5.4 Dispatcher Resource Utilization

The optimistic architecture with banking and merging trades off a d-fold lower state
memory consumption for increased resource consumption in the dispatcher. For a sketch
with a given matrix shape and sketching functions, architecture parameters have the
following impact on resource consumption in the dispatcher:

Parallel inputs d: The number of FIFO queues in a regular and oversubscribed architec-
ture is d2 and d2

· 2, respectively. Thus, resource consumption for queues and vertical
merging in the dispatcher increases quadratically with d. As horizontal mergers cover
each of the d inputs, they contribute linearly.

The above shows that the dispatcher eventually becomes the bottleneck of optimistic
architectures with an increasing number of inputs d. In these cases, we can build hybrid
architectures that maintain r replicas of optimistic sketching units with d inputs. These
architectures support dhybrid = r · d inputs.

Queue size qs: Resource consumption in the dispatcher increases linearly with the
queue size qs. For BRAM-based FIFO queues, BRAM is the only affected resource.

Vertical merging / Horizontal merger look-ahead h: Enabling vertical merging adds a
constant overhead to an optimistic architecture. The number of reducers and compare-
forwards in horizontal mergers and, thus, the overall resource consumption increases
linearly with the look-ahead h.

However, horizontal merging additionally impacts domain value optimization. Consider
the CM sketch in Section 2.1.2: Vendor toolchains detect that a single bit is sufficient
to encode a {+1, 0} increment. This optimization can significantly reduce the resources
required for increment handling. In particular, smaller increments decrease the width of
queues. As increments in merge trees increase by one bit per level, inflated increments
due to increasing h in horizontal merging also affect queues and vertical mergers.

5.5 Limitations

While optimistic architectures consume fewer memory resources, some use cases cannot
tolerate processing stalls. Specifically, stalls become an issue if both of the following two
properties hold:

Unidirectional communication: The sketching accelerator lacks control communication
with the data source or may not request the data source to pause transmitting input data

108

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

until the sketching unit recovers from stalls. For example, pausing processing data on a
hard drive is feasible, while we cannot halt streaming data from network monitoring.

Hard processing guarantees: The application requires that every input value is guaran-
teed to be processed by the sketching accelerator. For example, the estimates computed
by a CM sketch are only hard upper bounds if the sketch observes every input element.
An application testing whether specific malicious IP addresses connect to a service may
require this guarantee.

Fortunately, hard guarantees for processing at full rate are rarely required. Streaming
engines commonly provide soft guarantees as they employ software queues to handle
backpressure [24].

Banking and merging exclude sketches (e.g., CM-CU [34, 49]) or applications (e.g.,
heavy change detection in networks [154]) that require evaluating the sketch on the
fly: Due to increments potentially arriving merged and at different clock cycles in each
row, monitoring updates to the sketch in real time cannot be trivially translated to an
optimistic architecture. Bringing all rows to a consistent state requires waiting for all
queue elements to be processed. Thus, optimistic architectures favor applications with a
separation between maintaining and evaluating the sketch.

5.6 Application: Approximate Group-By on a Xilinx U250 Accelerator

As optimistic sketching architectures reduce the resources necessary to implement state
memory, there are more resources available to implement larger or additional sketches.
To show our approach’s potential, we approximate the result of a grouped aggregate
query as an intuitive application for optimistic FPGA-accelerated sketching. To that end,
we use an ensemble of variations of the CM sketch, which we explain in Section 5.6.1.
This application can benefit greatly from the additional available resources, as we exploit
them to increase accuracy via the sketch size. Furthermore, it tolerates eventual stalls
imposed by the optimistic architecture.

We implement sketching on a high-end Xilinx U250 data center accelerator. Sec-
tion 5.6.2 discusses the architecture. As cloud services, such as AWS or Azure, provide
instances with similar hardware, our approach can enable fast insights into large datasets
stored in cloud storage or cloud-based data warehouses.

109

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

Table 5.1: Sketch ensemble for grouped aggregates

Aggregate Map Identity Reduce Evaluation Bound

count(*) +1 0 + min Upper
sum(v) +v 0 + min Upper
min(v) v vmax min max Lower
max(v) v vmin max min Upper

5.6.1 Sketch Ensemble

We construct an ensemble of four variations of the CM sketch over an input stream s of
key-value pairs (k, v). The sketches approximate the result of the following SQL query:

select k,count(*),sum(v),min(v),max(v) from s group by k

All four sketches use the H3 family of hash functions in the select function, but vary in
the map, reduce, and evaluation function as well as the quantities they estimate. Table 5.1
lists the functions and estimated quantities.

The CM sketch shown in Figure 2.4a constructed over the keys provides an upper
bound on the number of observed tuples count(∗) in the group for each key k. Analogously,
incrementing by the value v while hashing on the key yields a sketch that provides an
upper bound on the sum of values sum(v) grouped by the key k. The idea of scattering
aggregate functions using hash functions over multiple rows and columns to mitigate
the impact of collisions extends to other algebraic aggregate functions, such as the
minimum and maximum. To estimate these quantities, we replace the reduce function
with the minimum and maximum function and set the identity element to the highest
and lowest possible key, respectively. In the following, we will refer to the sketches by
their aggregate (e.g., sum-sketch, max-sketch).

The count-sketch also allows inclusion tests in the set of keys. As the sketch provides
an upper bound on the number of tuples with a given key, an estimate of zero provides
certainty that the input data did not include the key, and thus querying the sum, min,
and max sketches is futile.

Maximizing the size of the sketches is essential to improve the result quality for
this application. The expected number of hash collisions on an entry in each row of a
CM sketch is g

n , g being the number of groups. Thus, the number of collisions reduces
inversely proportional to the number of columns. The impact of collisions varies among
aggregate functions: While errors for sum and count accumulate with each collision,
min and max errors depend only on the most extreme value that hashed to a bucket.

110

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

Bank 0 Bank 1 Bank 2 Bank 3
DDR4

Memory

FPGA

PCIe Gen3 x16

Xilinx U250

Sketches
(to host)

SLR0 SLR1 SLR2

Data
(from host)

SLR3

Sketching
Kernel

Sketching
Kernel

Sketching
KernelSketching

Kernel

Vitis
Platform

Figure 5.9: Sketching coprocessor for grouped aggregates implemented using
Xilinx Vitis.

Each additional row may improve the estimate, as it represents an independent trial
with different random collisions.

5.6.2 Accelerator Architecture

We perform sketching on a Xilinx U250 data center accelerator with a high-end UltraScale+
FPGA. We implement sketching as RTL kernels in the Xilinx Vitis framework. Vitis enables
portability and reuse of FPGA designs in RTL and high-level languages, implements I/O
on the devices, and exposes GPU-like interfaces to host code.

Figure 5.9 shows a schematic of the U250 accelerator card and our sketching imple-
mentation on it. We evenly split the input data and transmit the chunks to the four 8GB
DDR4 memory banks on the device via PCI Express. The FPGA consists of four Super
Logic Regions (SLRs), each directly connecting to a DDR4 memory bank. As connectivity
between SLRs is limited, we run independent sketching kernels for each memory bank
and lock the kernels operating Bank 0, Bank 2, and Bank 3 inside their respective SLR.
We only allow the kernel operating Bank 1 to spread over multiple SLRs because the
Vitis platform blocks a significant portion of SLR1 to provide auxiliary functionality.

Each memory bank connects to the kernel via a 512-bit wide interface operating
at 300 MHz, which results in a maximum total throughput of 600 gbps for all four
memory banks. While processing on the U250 accelerator is limited by the 126 gbps
theoretical maximum throughput of PCI Express Gen3 x16, we still provision for
maximum throughput when reading from device memory: Existing or future FPGA

111

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

boards with better connectivity, e.g., multiple 100G Ethernet ports or PCIe Gen4/5, can
narrow or close the gap.

UltraScale+ provides two types of on-chip high-density memory elements: Regular
BRAM elements provide 18 KB with varying width and depth; UltraRAM (URAM)
provides 288 KB with a fixed 72-bit width and depth 4096. As URAM makes up the
largest portion of on-chip memory, we map memory segments to URAM. We use the
more flexible BRAM for the large FIFO queues in the regular architectures, while we
implement the smaller queues in the oversubscribed architectures with logic resources.

The accelerator assumes 32-bit unsigned input values for the key and value. In
addition to updating four sketches in parallel, we invest the additional resources provided
by the optimistic architecture to implement the count- and sum-sketch with an increased
state size of 64 bits. This increase is necessary as the 32-bit state commonly used in
sketching implementations [29, 89] is prone to overflows for large skewed datasets.

Overall, we designed the architecture to show the maximum throughput for our
application that is practically achievable on the FPGA shipped with the U250. As we
integrated our approach with Vitis, our implementation can be adjusted to other boards,
cloud-based FPGAs, throughput requirements, and use cases with moderate effort.

5.7 Evaluation

We investigate the performance of our architecture in terms of stall rates, resource
consumption, maximum operating frequency, throughput, and accuracy. First, we show
the effect of merging on the stall rate for various real-world and artificial datasets to
devise the degree of merging required to handle data skew. Second, we show that
optimistic architectures are feasible on a modern FPGA, consume less state memory than
pessimistic ones, and can provide comparable maximum operating frequencies. Third,
we highlight the impact of merging regarding resource consumption and maximum
operating frequency. Finally, we show that a modern FPGA accelerator can achieve vast
throughput for our approximate group-by application, while optimistic architectures
boost accuracy due to larger summary sizes.

We evaluate our approach using various sketching implementations and baselines:

Simulator: A hand-written C++-based software replica of all components in the frontend
and dispatcher determining the stall rate. It allows us to validate a broad range of
parameters without going through the time-intensive process of compiling or simulating
the entire sketching RTL.

Dummy: Sketching unit RTL connected to a minimal dummy I/O template that targets

112

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

a Xilinx XCVU13P FPGA equivalent to the one on U250 accelerator boards. It allows us
to determine the resource consumption and maximum operating frequency of sketching
units in isolation and without the overheads of placing and routing with actual I/O. We
use the Vivado 2021.2 toolchain.

U250: A complete sketching accelerator for our group-by application based on a Xilinx
U250 accelerator card as detailed in Section 5.6. We use the Vitis 2022.1 toolchain with
the XDMA 4.1 platform.

EPYC: Sketching for our group-by application performed on two AMD EPYC 7742
CPUs each providing 64 cores with two threads. We use GCC 9.4 with OpenMP for
multithreading and compiler intrinsics for vectorization (AVX2). Each software thread
constructs an instance of the sketch over a chunk of input data. We evaluate two
multithreading strategies: We maintain one sketch (1) per hardware thread to maximize
the potential for instruction-level parallelism and (2) per core to reduce cache thrashing.

A100: Sketching for our group-by application performed on an Nvidia A100 GPU using
CUDA 11.7. We evaluate two parallelization strategies: (1) All threads cooperate at
updating each row to maximize data locality. (2) Each thread applies updates exclusively
for one row in a total of r sketch instances. This strategy reduces conflicting atomic
operations to memory. We try increasing powers of two for r until the memory required
exceeds device limits.

We generate RTL using Scotch [89] as a representative for pessimistic sketching. For
optimistic sketching, we adjusted Scotch to include banking, map-reduce updates, and
our merging strategies. Based on the simulation results shown in Section 5.2, we select a
queue size of qs = 512 for the regular and qs = 64 for the oversubscribed architecture.
As our optimistic architecture addresses a design issue of pessimistic data parallelism,
comparisons extend to any pessimistic architecture.

We evaluate our approach using artificial and real-world datasets.

Uniform: Uniformly drawn keys with values fixed to +1.

Zipf(ρ): Keys drawn from a Zipf distribution generated with support ρ ∈ {1.05, 1.5} and
values fixed to +1.

Caida: Real-world traces collected from the Equinix Chicago internet exchange [23] in
2011. We use the source IP address as the key and the package size as the value.

Cup’98: Access logs for the 1998 Football World Cup web site [7]. We use the client ID
as the key and the answer size as the value.

113

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

NYT: Trips of yellow taxis in New York City between 2009 and 2016 [148]. The key
encodes the pickup and dropoff location coordinates on a 256x256 grid. The value is the
total amount paid for the ride. Data is ordered by the dropoff time.

5.7.1 Impact ofMerging on Stall Rates

We explore the merging effort necessary to achieve low stall rates based on various
real-world and artificial datasets using our simulator. This experiment allows us to select
good parameters for FPGA implementations used in the following experiments. In our
first experiment, we give an exhaustive overview of how the stall rates vary for datasets
and increasing merging effort. We enable vertical merging before gradually increasing
the horizontal merging look-ahead h. In a second experiment, we justify this strategy.

We report the mean stall rate for 200 iterations of the simulator for a sketch with one
row and 222 columns.

Merger Configuration

Figure 5.10 shows the effect of merging on stall rates for each dataset. As expected, a
uniform distribution is not affected by merging, and the banked architecture is sufficient
to achieve stall rates below 1%. The Zipfian(1.05) dataset highlights the differences
between the regular and oversubscribed architecture: No merging is required for the
oversubscribed architecture, as the abundance of banks prevents stalls in almost all cases.
However, the regular architecture requires vertical merging and horizontal merging
with a look-ahead of h = 128 to achieve stall rates below 1% for all values of d. The more
skewed distribution in Zipf(1.5) causes the regular architecture to require less merging
because the effectiveness of mergers increases. The oversubscribed architecture now
requires vertical merging for stall rates below 1%, as the most common value in the
distribution constitutes 38% of the dataset and cannot be handled by the banks alone.
For the real-world datasets, we observe that the plot for NYT is similar to Zipf(1.5) in
that stall rates without merging are above 50% and quickly drop to zero with additional
merging. In this sense, Caida and Cup’98 are closer to the less skewed Zipf(1.05) dataset.
This observation is intuitive as we expect pairs of taxi pickup and dropoff regions to
contain obvious heavy hitters while identifiers in network traffic are less skewed.

Summary: Overall, we see that both architectures require vertical merging to achieve
stall rates below 1% on all datasets. The oversubscribed architecture has stall rates close
to zero when there is additional horizontal merging with a look-ahead h = 2 in our
experiments. The regular architecture with d ∈ {4, 8, 16} needs additional horizontal

114

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

0.000

0.005

0.010

0.015

Re
gu

la
r

St
al

l R
at

e
Uniform

0.0

0.1

0.2

0.3 Zipf(1.05)

0.5

1.0 Zipf(1.5)
d=4
d=8
d=16
d=32

0.00

0.05

0.10

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.000

0.005

0.010

0.015

O
ve

rs
ub

sc
ri

be
d

St
al

l R
at

e

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.00

0.01

0.02

0.03

0.04

0.5

1.0
d=4
d=8
d=16
d=32

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.00

0.01

0.02

(a) Artificial data

0.5

1.0 NYT

0.00

0.05

0.10

Re
gu

la
r

St
al

l R
at

e

0.000
0.025
0.050
0.075
0.100
0.125 Cup'98

0.0

0.1

0.2

0.3 Caida
d=4
d=8
d=16
d=32

0.5

1.0

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.00

0.01

0.02

O
ve

rs
ub

sc
ri

be
d

St
al

l R
at

e

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.000

0.005

0.010

0.015

0.020

0,0 1,0 1,2 1,4 1,8 1,1
6

1,3
2

1,6
4

1,1
28

(Vertical, h)

0.00

0.02

0.04

0.06
d=4
d=8
d=16
d=32

(b) Real-world data

Figure 5.10: Stall rates for optimistic architectures with increasing merging effort.
For Oversubscribed, vertical and horizontal merging with h = 2 is sufficient to
prevent stalls entirely. For Regular, we need h = 128 for stall rates below 1%
(dotted line).

115

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

d=4 d=8 d=16 d=320.0

0.5

1.0
St

al
l R

at
e

Regular
h=d v

d=4 d=8 d=16 d=32

Oversubscribed
h=2d v,h=2

Figure 5.11: Stall rate distribution for architectures that favor vertical (v) or
horizontal merging (depth h). Favoring vertical merging is more effective.

merging with h = 128 to achieve stall rates below 1% over all datasets. As only one
dataset requires such a large look-ahead, we select h = 64 as a compromise between
merging effort and robustness. For d = 32, a look-ahead of h = 32 suffices in all cases.

Vertical vs. HorizontalMerging

Next, we justify adding vertical merging before investing resources into the look-ahead h
for horizontal merging. Figure 5.11 shows the distribution of stall rates over all datasets
and iterations in a boxplot.

For a regular architecture, we compare plain vertical merging and horizontal merging
with the same number of reducers (h = d). We see that vertical merging improves the
median (except for d=4), the upper quantile, and the whiskers (1.5 IQR). The effect
increases with d and is most remarkable for d = 32 where more than half of runs had a
stall rate of 10% and higher for horizontal merging, while vertical merging reaches this
value only in outliers.

For an oversubscribed architecture, we evaluate vertical merging with minimal
horizontal merging (h = 2), as this configuration has been shown to prevent stalls almost
entirely in the previous experiment. We compare against horizontal merging with h = 2d
resulting in the same number of reducers. While both strategies indeed suffice to prevent
stalls almost entirely, favoring vertical merging before horizontal merging prevents
several of the remaining outliers.

Summary: Overall, applying vertical merging first leads to more effective estimators
for the same number of reducers.

116

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

5.7.2 Resource Consumption

Next, we explore the resource consumption of our optimistic architectures for the count-
sketch with the dummy I/O template. We set the merging parameters as determined
in the previous section. We report the consumed fraction of look-up tables, flipflops,
BRAM, and URAM segmented by dispatcher, frontend, backend, and other (e.g., logic to
retrieve the state). We also report the maximum operating frequency over five different
Vivado implementation strategies to compensate for noise due to randomized algorithms
in placement and routing. The operating frequency is likely to be an upper bound for an
implementation with I/O, which introduces additional constraints and logic. Note that
all reported values are attributes of the implementation and, thus, data-independent.

Optimistic vs. Pessimistic

First, we compare the pessimistic architecture to our optimistic ones. Figure 5.12 shows
the pessimistic architecture for d ∈ {4, 8, 16, 32} inputs targeting 80% of the available
URAM compared to a regular and oversubscribed optimistic architecture with the same
sketch size (m = 1,n = 4096·1024

d). Only for the oversubscribed architecture with d = 32
inputs, we report the results for double the number of columns because every bank needs
at least one URAM memory segment. Most importantly, we see URAM consumption
in the backend decreasing by the expected factor of d when comparing the optimistic
and pessimistic architectures. Second, we observe the backend dominating resource
consumption for the pessimistic architecture. LUTs and flipflops are between 8 and 9% for
all d as the number of memory segments primarily determines the resource consumption
of the whole architecture and is kept constant. For our optimistic architectures with
d ∈ {4, 8, 16} inputs, we see a reduction by a factor of 2.8 and 3.8 in the LUTs and flipflops
consumed as the resource consumption in the backend decreases due to fewer memory
segments used overall. For d ∈ {16, 32} inputs, we observe a crucial implication of
our optimistic architecture. While the overall resource consumption in the pessimistic
architecture increases linearly with d, resource consumption for the FIFO queues and
vertical merging grows quadratically for optimistic architectures. Thus, the dispatcher
can dominate resource consumption for high values of d. This effect manifests for
accelerators d = 32 for which the oversubscribed architecture consumes more LUTs than
the pessimistic architecture, and the regular architecture takes 38% of available BRAM.

Figure 5.13 compares the pessimistic and optimistic architectures in terms of the
maximum operating frequency. First, we observe that the maximum operating frequency
for pessimistic architectures remains between 442 and 478 MHz. As the number of

117

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

0

20

d
=

4
Ut

il.
 (%

)

2.5 2.4
8.8

LUTs

2.4 2.2
8.4

Flipflops

0

50

0.6 0.0 0.0

BRAM

20.0 20.0

80.0
URAM

0

20

d
=

8
Ut

il.
 (%

)

1.9 1.9
8.8

1.8 1.6
8.3

0

50
2.4 0.0 0.0 10.0 10.0

80.0

0

20

d
=

16
Ut

il.
 (%

)

2.5 3.3
8.8

2.4 2.3
8.3

0

50
9.5 0.0 0.0 5.0 5.0

80.0

O-R O-O P0

20

d
=

32
Ut

il.
 (%

)

5.5
11.0 9.0

O-R O-O P
4.2 7.7 8.3

O-R O-O P0

50 38.1

0.0 0.0
O-R O-O P
2.5 5.0

80.0

Dispatcher Frontend Backend Other

Figure 5.12: Resource utilization for a pessimistic architecture (P) consuming
80% URAM compared to regular (O-R) and oversubscribed (O-O) architectures
with the same sketch size. Optimistic architectures reduce URAM utilization.

118

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

O-R O-O P0

500
Fm

ax
 (M

Hz
)

465 514 478
d=4

O-R O-O P

338
507 466

d=8

O-R O-O P

290
501 466

d=16

O-R O-O P

198
387 442

d=32

Figure 5.13: Max. operating frequency for a pessimistic architecture with 80%
URAM utilization compared to regular and oversubscribed architecture with the
same sketch size.

memory segments is kept constant, varying the number of inputs has only a minor
impact on the complexity of the overall architecture. For d ∈ {4, 8, 16} inputs, we see that
an oversubscribed architecture consistently supports frequencies of more than 500 MHz,
while the pessimistic architecture has a 30 to 40 MHz lower operating frequency. Thus,
the additional complexity introduced by banking and merging does not outweigh the
benefits of reducing the overall resource consumption. This observation turns for d = 32:
The large dispatcher complicates placement and routing, and the maximum operating
frequency for the oversubscribed architecture drops to 387 MHz, while the pessimistic
architecture still operates at 442 MHz. The regular architecture does not achieve higher
operating frequencies than the pessimistic architecture for any d. While the maximum
operating frequency for d = 4 inputs is only a few percent lower, it decreases in the order
of 100 MHz with every doubling of d. Routing becomes increasingly complex as an
additional resource is consumed. For d = 32 inputs, BRAM consumption even requires
the dispatcher to spread over SLRs.

Summary: We confirmed that optimistic architectures reduce state memory con-
sumption by a factor of d while consuming fewer LUTs and flipflops for d ∈ {4, 8, 16}.
However, we also observe that optimistic architectures do not scale arbitrarily with
d. In these cases, hybrid architectures consisting of multiple optimistic replicas can
reduce resource consumption for dispatchers. Furthermore, we see the oversubscribed
architecture outperforming the regular architecture in terms of maximum operating
frequency and overall resource consumption for this sketch and FPGA.

Merging & Reduce

Next, we investigate the impact of merging and more involved reduce functions on
resource consumption. We report the resource consumption and set the number of
columns to 4096 · 256 resulting in 20% URAM consumption. Figure 5.14 compares

119

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

0

5
co

un
t

Ut
il.

 (%
)

2.6 2.7 3.5 3.8 4.3

LUTs

0

5
2.3 2.4 3.1 3.4 4.0

Flipflops

0

20
9.5 9.5 9.5 9.5 9.5

BRAM

0,0 1,0 1,161,321,64
(Vertical, h)

0

5

su
m

Ut
il.

 (%
)

3.5 3.7 4.2 4.8 6.0

0,0 1,0 1,161,321,64
(Vertical, h)

0

5 2.9 3.3 4.2 5.0
6.7

0,0 1,0 1,161,321,64
(Vertical, h)

0

20 19 19 19 19 19

Dispatcher Frontend Backend Other

Figure 5.14: Resource utilization for regular and oversubscribed architecture
with d = 16 utilizing 20% of available URAM for increasing merging effort.

the count-sketch with the sum-sketch for d = 16 inputs in a regular architecture. As
incrementing state counters by a 32-bit value causes larger increments that need wider
adders and FIFO queues, maintaining the sum-sketch requires more resources. We report
the resource consumption for no merging, vertical merging only, and vertical merging
with horizontal merging and look-ahead h ∈ {16, 32, 64}. While BRAM consumption
for FIFO queues is twice as high for the sum-sketch, we also observe up to twice as
large dispatchers in terms of LUTs and flipflops. This increase shows that the dispatcher
is highly affected by the reduce function. Furthermore, we see that the look-ahead
h strongly impacts both sketches. Although adding vertical merging increases LUT
and flipflop consumption by 5 to 14% of the available resources, adding a horizontal
merger with h = 16 adds up to 29%. While the added horizontal mergers with h = 16
have as many reducers as the vertical merger, the additional merging levels cause an
overproportionate demand for resources. This observation also supports our choice to
apply vertical before horizontal merging. When further doubling h, the increase is not as
high since increments grow by one bit for every level in the tree of reducers.

Summary: We observe that the reduce function has a large impact on resource con-
sumption in the dispatcher. Furthermore, horizontal merging has an overproportionate
impact, as growing increments affect all following components.

120

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

Table 5.2: Accelerators implemented on U250

Architecture Replicas per kernel Rows Columns

Oversubscribed 1 2 4096 · 32
Regular 2 2 4096 · 16
Pessimistic 8 2 4096 · 5

5.7.3 Application

Finally, we evaluate our group-by application on a Xilinx U250 FPGA data center
accelerator. Compared to the dummy I/O template, this implementation contains the
logic to interface with a host computer via PCIe and to transfer data between host
and device memory. This functionality consumes additional resources and complicates
placement and routing of logic on the FPGA. Furthermore, it instantiates four sketching
kernels operating on each DDR4 memory bank independently. Table 5.2 lists the
accelerators we implemented on the U250 board.

We set the number of rows to m = 2 for all architectures as it is the largest number
of rows for which the oversubscribed architecture fits the device without additional
replication in kernels. The regular accelerator requires a hybrid architecture with two
replicas per kernel to fit the device. Naturally, the pessimistic architecture requires eight
replicas per kernel. To determine the number of memory segments used, we increase it
until compilation fails.

Throughput

We compare regular, oversubscribed, and pessimistic accelerators to optimized data-
parallel implementations on two state-of-the-art AMD EPYC CPUs and one Nvidia A100
GPU in sketching throughput. We report the mean throughput over 10 iterations for all
datasets and report results for the best implementation strategy for the CPU and GPU
baselines. Measurements exclude data transfer to allow for a comparison independent
of limitations due to the interconnect. Error bars denote the standard deviation.

Figure 5.15 shows the results. First, we see that all FPGA accelerators achieve around
575 gbps over all datasets which is close to the theoretical optimum of 600 gbps for the
512-bit memory interface running at 300 MHz. The difference is due to the memory
interface not providing new data in 4% of clock cycles. These breaks reduce pressure on
FIFO queues such that no stall occurs for any dataset. Our FPGA accelerators outperform
the baselines by at least 80 gbps; for some datasets, even by more than a factor of 2. The
throughput of A100 varies between 320 and 494 gbps, while the EPYC CPU achieves

121

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

between 223 and 419 gbps. The throughput of our FPGA accelerators is very robust with
respect to the distribution of the input data and the sketch size. The performance of the
software baselines varies due to caching effects and the costs of atomic operations. This
is an advantage of FPGA implementations, given that we report the best implementation
strategy for our software baselines and that the best strategy varies for different summary
sizes and datasets.

Our FPGA implementations show one to two gbps higher throughput for the larger
real-world datasets. While the throughput is independent across data distributions
as no stalls occur, there is an overhead for launching kernels over PCIe. Thus, high
throughput sketching with on-the-side PCIe accelerators such as our A100 and U250
requires processing data in larger batches to amortize overheads. However, FPGAs
famously support processing in the data path, which would avoid such overheads [81].

Note that our implementation supports m > 2 rows by making multiple passes over
the input data, causing a proportionate decrease in throughput. As this behavior is the
same for the software baselines, our results also apply to m > 2 rows.

Summary: Our optimistic accelerators outperform optimized data-parallel software
implementations on a GPU and a CPU by up to 352 gbps. We have shown that our FPGA
accelerators practically never stall for various artificial and real-world datasets. Their
performance is robust with respect to the sketch size and data distribution, while CPU
and GPU throughput varies depending on the implementation strategy, sketch size, and
input data.

Estimation Error

We compare the accuracy of estimates in our application based on the summary sizes
supported by the regular, oversubscribed, and pessimistic accelerator over our real-world
datasets. We report the cumulative absolute error over 40 iterations in five scenarios.
Error bars denote the standard deviation. First, we evaluate the count-sketch for the
entire range of keys (Full Count). As all datasets use only a fraction of the entire domain
of keys, this quantifies the ability of the sketch to exclude unseen keys from the result
set. The remaining four scenarios evaluate each sketch over the set of keys (Result).

Figure 5.16 shows the results. First, we observe that the increased sketch size
translates to increased accuracy in almost all cases. For Full Count, Result Count, and
Result Sum, the accuracy increases by up to an order of magnitude, with oversubscribed
consistently providing better accuracy. The increase in accuracy for the min and max
sketches varies based on the dataset. For NYT, we see increases of an order of magnitude

122

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

0

500

Pe
ss

im
is

ti
c

Tp
ut

 (g
bp

s) 574.4
360.2 326.8

Uniform
574.5

361.0 330.1

Zipf(1.05)
574.0

319.5 366.5

Zipf(1.5)

0

500

Re
gu

la
r

Tp
ut

 (g
bp

s) 574.6 384.2
296.0

574.7
379.3 300.3

574.6
343.3 378.1

U250 A100 EPYC0

500

O
ve

rs
ub

sc
r.

Tp
ut

 (g
bp

s) 574.7
360.5

222.7

U250 A100 EPYC

574.7
357.9

226.2

U250 A100 EPYC

574.8
332.0 336.9

(a) Artificial data

0

500

Pe
ss

im
is

ti
c

Tp
ut

 (g
bp

s) 575.7
403.2 366.0

NYT
575.7 493.5

353.7

Cup'98
576.0 480.6

352.7

Caida

0

500

Re
gu

la
r

Tp
ut

 (g
bp

s) 575.7 436.4 414.1
575.7 477.3 379.1

576.0 477.1 365.0

U250 A100 EPYC0

500

O
ve

rs
ub

sc
r.

Tp
ut

 (g
bp

s) 575.6 436.3 418.8

U250 A100 EPYC

575.7 479.6
362.4

U250 A100 EPYC

575.9 460.2
303.5

(b) Real-world data

Figure 5.15: Throughput of regular, oversubscribed, and pessimistic architecture
on a U250 accelerator compared to a GPU (A100) and CPU (EPYC). FPGA
accelerators provide robust throughput and outperform GPU and CPU baselines
in all experiments.

123

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

for oversubscribed and regular. For Caida and Cup’98, increased sketch sizes have little
impact, and accuracy varies by at most 4%. The different nature of the datasets explains
this: For the NYT dataset with its few distinct keys (0.0008%), increasing the sketch size
reduces the chance of few extreme groups colliding with others. Caida and WC’98 have
more than 0.02% distinct groups, causing thousands of collisions in each entry. As the
minimum and maximum of many groups have the same magnitude, these values end
up in virtually every bucket of the min- and max-sketch. Thus, reducing the number of
collisions does not lead to a significant reduction in the estimation error for min and
max estimates for these datasets.

Summary: Increased sketch sizes enabled by optimistic architectures translate to up
to an order of magnitude higher accuracy.

5.8 RelatedWork

Recent work on FPGA-accelerated sketching focuses on data analytics and exploits data
parallelism. Scotch generates sketching accelerators for a broad class of matrix sketches
based on the Select-Update model [89]. Furthermore, to handle single-column sketches,
our original publication on Scotch proposes the Map-Apply model [89] to implement
merged updates. To achieve data parallelism, the Map-Apply model requires the user
to implement a merger in the apply function manually, hardcoding the degree of data
parallelism d > 1. In this work, we replace the update function with a map and an
associative reduce UDF. Thereby, we obtain a model that is suitable for both column
and matrix sketches and allows generating mergers for arbitrary degrees of d. Kulkarni
et al. implement the HyperLogLog (HLL) algorithm on an FPGA and parallelize it
using multiple concurrent pipelines [92]. Following a similar architecture, Chiosa et
al. combine HLL, CM, and FAGMS in a single FPGA accelerator [29]. All of the above
techniques implement data parallelism pessimistically via replication. In contrast, our
approach maintains a single replica optimistically to save resources.

Chrysos et al. explore various FPGA implementation strategies for the Exponential
CM sketch [32], which maintains exponential histograms instead of regular counters
in the sketch matrix. The authors exploit the inherent temporal access patterns in
exponential histograms by pipelining updates to the frequently updated first bucket
levels. The infrequent updates to the remaining levels are applied iteratively and require
stalling the frontend. Furthermore, the authors exploit data parallelism by instantiating
multiple backend replicas that operate on the same memory (BRAM and DRAM), which
results in stalls for concurrent accesses to the same memory location. To avoid stalls, the

124

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

O-O O-R P0

4

Fu
ll

Cn
t

Ab
s.

er
ro

r 1e10

0.056 0.16
1.4
NYT

O-O O-R P0

4 1e14

0.24 0.53
2.0

Cup'98

O-O O-R P0

4 1e14

0.16 0.42
1.9

Caida

O-O O-R P0

4

Re
s.

Cn
t

Ab
s e

rro
r 1e3

0.072 0.27
2.1

O-O O-R P0

2 1e11

0.15 0.36
1.3

O-O O-R P0

4 1e11

0.19 0.49
2.3

O-O O-R P0

5

Re
s.

Su
m

Ab
s.

er
ro

r 1e6

0.068 0.25
2.1

O-O O-R P0

2 1e19

0.22 0.59 0.85

O-O O-R P0

1 1e16

0.41 1.1
5.5

O-O O-R P0

1

Re
s.

M
in

Ab
s.

er
ro

r 1e6

0.18 0.67
5.2

O-O O-R P0

2 1e13
0.93 0.93 0.93

O-O O-R P0

1 1e11
6.8 7.0 7.1

O-O O-R P0

5

Re
s.

M
ax

Ab
s.

er
ro

r 1e5

0.096 0.36
3.1

O-O O-R P0

2 1e16
0.78 0.78 0.78

O-O O-R P0

3 1e11
1.6 1.6 1.6

Figure 5.16: Estimation error for approximate group-by queries with summary
sizes supported by oversubscribed (O-O), regular (O-R), and pessimistic (P)
architectures. The larger summary sizes provided by optimistic architectures
result in up to an order of magnitude improved accuracy.

125

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

authors detect heavy hitters and route them to a fixed number of additional dedicated
replicas. In contrast, the algorithm class that we consider in this work has no inherent
access patterns to exploit. In addition, the map and reduce functions are simpler than
maintaining an exponential histogram, and the individual states consist of only a few
bytes. This allows us to handle heavy hitters more efficiently by pre-partitioning values
during dispatching and merging them in pipelines.

To save resources and fit more columns into BRAM, Sateesan et al. replace the simple
counters in a CM sketch with approximate ones [132]. This optimization is orthogonal
to the ones we propose in this work.

Several authors suggest the Map-Reduce paradigm as a general-purpose program-
ming model for FPGAs [136, 163, 168]. However, a general-purpose Map-Reduce engine
cannot assume common algorithm-specific optimizations in sketching accelerators, e.g.,
streaming updates to a sketch matrix. In contrast, we use map and reduce functions only
to replace the update function in the Select-Update model, thereby allowing in-pipeline
merging of heavy hitters.

Finally, the network community has also proposed several FPGA-accelerated sketch-
ing approaches for network monitoring [133, 140, 141, 153, 154, 169]. These approaches
assume that only a few fields of each package need to be processed, and thus it is
sufficient to process a single value per clock cycle. As a result, unlike our work, the
above approaches do not exploit data parallelism.

5.9 Conclusion

This chapter introduces an optimistic architecture for data-parallel sketching on FPGAs
that partitions the state memory in multiple banks available to all inputs. As skew in
bank accesses is the Achilles’ heel of this architecture and requires stalling, we propose
in-pipeline merging of updates to mitigate the impact of heavy hitters by exploiting
temporal locality. To enable merging, we introduce a theoretical framework that describes
updates in terms of a map and a reduce function.

Compared to the pessimistic state-of-the-art that fully replicates the entire sketching
unit for each of the d parallel inputs, our optimistic architecture reduces the consumption
of the scarce state memory by up to a factor of d. Furthermore, we apply optimistic
sketching to an approximate query processing application, observing robust sketching
throughput of 575 gbps over various real-world and artificial datasets, which is up to
352 gbps higher than the throughput of state-of-the-art CPU and GPU implementations.
Finally, we show that investing the saved state memory in larger sketch sizes results in

126

Chapter 5. Optimistic Data Parallelism for FPGA-Accelerated Sketching

better estimates up to an order of magnitude.
Overall, given the widespread availability of FPGA accelerators, our optimistic

architecture paves the path towards more resource-efficient and accurate big data
analytics.

127

6
Conclusion

In this thesis, we introduced novel techniques to accelerate approximate data analysis
tasks using parallel processors. We have made three main contributions:

GPU-Accelerated KDE for Join Selectivity Estimation: We have strengthened
the case for statistical coprocessing on GPUs in relational databases by generalizing
feedback-optimized KDE estimators to joins. The proposed estimators support queries
consisting of equijoins subject to selections on base tables. The techniques allow for
computing crucial selectivity estimates over large databases with small summaries that
are easy to construct and learn from query feedback. We have shown that KDE models
provide accurate join selectivity estimates. Exploiting GPU acceleration reduces the
estimator runtime by up to an order of magnitude and allows for at least four times
larger models within the same time budget.

Generating FPGA-Accelerators for Sketching At Line Rate: We proposed a system
to automatically generate and optimize FPGA accelerators for sketching with hard
guarantees on the processing rate. By keeping an FPGA expert out of the loop in
implementing sketching and maximizing the sketch size, the entry barrier to integrating
FPGA-accelerated sketching in systems lowers significantly. We have shown that such
accelerators match a hand-written implementation. Compared to parallel software
implementations, we can improve throughput by up to two orders of magnitude and
power consumption by up to 5.6x.

Optimistic FPGA-Accelerated Sketching: We have shown that an optimistic data-
parallel sketching architecture significantly reduces the FPGA resources required to

128

Chapter 6. Conclusion

implement a broad class of sketching algorithms. While the optimistic architecture
potentially requires stalling the architecture due to resource congestion, we have
introduced merging techniques that largely avoid such stalls. Furthermore, we have
integrated pessimistic and optimistic sketching in an approximate query processing
application, showing that a recent FPGA can achieve a throughput of up to 576 GB/s.
The larger summary sizes supported by optimistic architectures boost accuracy by more
than an order of magnitude.

This thesis shows that parallel processing architectures can significantly improve the
trade-off inherent to approximate data analysis. Using a GPU instead of a CPU allows
for more accurate selectivity estimates within the same time budget; FPGA-accelerated
sketching outperforms CPU and GPU in terms of throughput and energy consumption.
Our work on optimistic sketching with banking and mergers improves the resource
footprint of FPGA-accelerated sketching and is a compelling showcase for optimizations
enabled by custom hardware.

Additionally, our work shows that abstractions and systems allow for hiding the
complexity of the underlying hardware architecture from users. GPU-accelerated KDE in
the query optimizer inherently hides the complexity of KDE or GPUs to database users;
our approaches to FPGA-accelerated sketching lower the entry barrier to implement
sketching algorithms on FPGAs for algorithms and software developers by exploiting
abstractions for sketching.

6.1 Outlook

We have shown that approximate data analysis combined with parallel processors is a
powerful tool to increase the efficiency of data analysis tasks. We believe that we will see
more applications exploiting this combination in the future: Besides functionality and
saving costs in the presence of evergrowing data volumes [142], there is a trend toward
green computing focusing on performance per Watt [46, 107]. With the power consumption
of IT systems being identified as a significant contributor to CO2 emissions [54], we
expect energy efficiency to become even more crucial. Green computing has even
manifested in consumer CPUs as Intel offers consumer CPUs both providing performance
cores optimized for raw performance and efficient cores optimized for performance per
Watt [45]. Thus, maximizing energy efficiency by performing data analyses approximately
and on specialized parallel processors can be an answer to the demands of future data
analysis systems. We gladly contribute to this effort with this thesis.

129

Chapter 6. Conclusion

6.1.1 FutureWork

We hope our work inspires future research in the area. In the following, we propose
three possible directions for future work:
Domain-Specific Abstractions for Data Processing on FPGAs: As shown with our work
on FPGA-accelerated sketching [89], generalizing abstractions help reduce implementa-
tion effort as frameworks and libraries can provide common functionality. Designing
abstractions to accelerate other data processing tasks could help employ FPGAs in
data-intensive applications while increasing maintainability, e.g., compression, encoding,
encryption, or user-defined transformations in the data path.
Lightweight Kernel Density Estimation: This thesis and previous publications [70,
71, 88] have primarily shown that feedback-driven KDE-based selectivity estimation is
viable. While our evaluation shows that GPU acceleration speeds up the evaluation
and optimization of our KDE models, the technique could benefit from additional
research into reducing computational overhead. If overheads do not dominate the
estimators, the error function required for the Gaussian kernel dominates the execution
time. Plugging in an approximation for the error function or choosing a different kernel
could substantially speed up evaluation and training.
Approximate Stream Processing through Sketching at the Edge: Our experiments
on approximate query processing have shown promising results. Thus, building an
approximate stream processing system that operates on sketches constructed close to
the data sources (also referred to as edges) would be interesting. With multi-core CPUs,
FPGAs, and GPU-based systems on chip available as edge devices providing high
performance per watt, queries could be answered quicker and cheaper with fewer data
movement and computational pressure on intermediate nodes. Several exciting research
problems arise for such a system, e.g., selecting sketches based on a given query, handling
accuracy constraints, implementing windowing efficiently, and switching between dense
and sparse representations of a sketch matrix for transfer.

130

A
Appendix: Derivations for KDE-based Join

Selectivity Estimations

A.1 Gaussian Cross Contribution

The Gaussian kernel is a common choice for a continuous kernel in KDE. It is a normal
distribution Ns,δ2 (x) centered on the sample point s and using the bandwidth δ as
its standard deviation. In order to compute discretized probability estimates for an
integer join key ν from this continuous kernel, we simply integrate it over the interval
[ν − 0.5, ν + 0.5], leaving us with the discretized Gaussian kernel. We assume that join
attributes are not subject to selections (A = Z) and lift this assumption in Appendix A.2.

A.1.1 Cross Contribution

Substituting the discretized Gaussian kernel into Equation 3.6, yields the cross contribu-
tion for the Gaussian kernel:

Ĵi, j =
∑︂
ν∈Z

∫︂ ν+0.5

ν−0.5
Nt(i)

1 ,δ
2
1

(x) dx ·

∫︂ ν+0.5

ν−0.5
Nt(j)

2 ,δ
2
2

(x) dx (A.1)

Equation (A.1) does not have a closed-form solution that would allow us to efficiently
compute it without summing over all ν ∈ A. However, for probability densities f (x), g (x)
with values smaller or equal to one, we can approximate

∫︁ ν+0.5
ν−0.5 f (x) dx

∫︁ ν+0.5
ν−0.5 g (x) dx ≈∫︁ ν+0.5

ν−0.5 f (x) g (x) dx. We illustrate this approximation in Figure A.1, showing that in

131

Appendix A. Appendix: Derivations for KDE-based Join Selectivity Estimations

this case, the results for first integrating and then multiplying are very similar to first
multiplying and then integrating.

Substituting this approximation into Equation (A.1) gives us an approximate closed-
form solution:

Ĵi, j ≈
∑︂
ν∈Z

∫︂ ν+0.5

ν−0.5
Nt(i)

1 ,δ
2
1
· Nt(j)

2 ,δ
2
2
dx

=

∫︂ +∞

−∞

Nt(i)
1 ,δ

2
1

(x) · Nt(j)
2 ,δ

2
2

(x) dx

= Nt(i)
1 ,(δ2

1+δ
2
2)

(︂
t(j)
2

)︂ ∫︂ +∞

−∞

Nt′,δ′ (x)

= Nt(i)
1 ,(δ2

1+δ
2
2)

(︂
t(j)
2

)︂
(A.2)

The last transformation requires some explanation: The product N1,2 = N1 · N2 of
two normal probability density functions is itself a scaled normal probability density
function [19]. Its location t′ and scale δ′ are functions over the parameters of the
individual densities. Since we integrate over the full domain, this factor integrates to
one, leaving only the scaling factor, which is again given by a normal density function
that depends on the mean and bandwidth parameters of the original functions [19].

Equation (A.2) does not hold for densities with function values larger than one.
In particular, when the bandwidth of one of the two Gaussian functions is below
(2π)−

1
2 ≈ 0.4, the error increases drastically. However, since for this value only 1.3% of

the probability mass of a Gaussian is located outside of
[︁
µ − 0.5, µ + 0.5

]︁
, the estimator is

still able to fall back close to sample evaluation.

A.1.2 Generalized Cross Contribution

Plugging the discretized Gaussian kernel into Equation (3.8), we arrive at:

Ĵo1,...,on
=

∑︂
ν∈Z

n∏︂
i=1

∫︂ ν+0.5

ν−0.5
N

t(oi)
i ,δ2

i

(x) dx (A.3)

Similar to the single join case, we can plug in the approximation
∏︁

i

∫︁ v+0.5
v−0.5 pi(x)dx ≈∫︁ v+0.5

v−0.5

∏︁
i pi(x)dx. The product of k normal densities can be rewritten as a normal density

132

Appendix A. Appendix: Derivations for KDE-based Join Selectivity Estimations

0

0.005

0.01

0.015

0.02

0.025

−6 −4 −2 0 2 4 6 8 10

N1,16(v) · N3,4(v)
∫ v+0.5
v−0.5 N1,16(x)dx ·

∫ v+0.5
v−0.5 N3,4(x) dx

Figure A.1: Approximating the cross contribution for the Gaussian kernel by the
multiply-then-integrate approach

and a scale factor that does not depend on the integrand [19].

Ĵo1,...,on
=

∫︂
∞

−∞

n∏︂
i=1

N
t(oi)
i ,δ2

i

(x) dx

=S1...n ·

∫︂
∞

−∞

Nt1...n,δ2
1...n

(x)dx

=S1...n

(A.4)

Since we integrate over the entire domain, the normal density integrates to one, which
leaves us with the scale factor S1...n only. The scale factor S1...n is given by:

S1...n =

√︃
δ2

1...n∏︁n
i=1 δ

2
i

(2π)(n−1)/2
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∑︂

i=1

(︂
t(oi)
i

)︂2

δ2
i

−
t2
1...n

δ2
1...n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.5)

133

Appendix A. Appendix: Derivations for KDE-based Join Selectivity Estimations

Finally, the quantities δ2
1...n and t1...n can be computed from the individual means and

variances of each normal density:

δ2
1...n =

⎛⎜⎜⎜⎜⎜⎝ n∑︂
i=1

1
δ2

i

⎞⎟⎟⎟⎟⎟⎠
−1

t1...n =δ
2
1...n

n∑︂
i=1

t(oi)
i

δ2
i

(A.6)

A.2 Selections On Join Attributes

The assumption that join attributes are not subject to selections can be lifted. In general,
selections on the join attributes allow us to apply sample pruning for join attributes as
well which potentially reduces the number of tuples that we have to consider in the
cross pruning step.

Range selections require adjusting the equations for the cross contribution. If a range
selection l ≤ A ≤ u is applied to a join attribute, the normal density function in Equation
A.4 has to be considered:

Ĵo1,...,on
=S1...n ·

∫︂ u

l
Nt1...n,δ2

1...n
(x)dx (A.7)

However, we do not have to adjust the maximum distance inequality (Equation 3.10)
in cross pruning. As the additionally introduced factor

∫︁ u
l Nt′,δ′ (x) is smaller or equal

to one, the given inequality remains intact even in case of range predicates on the join
attribute.

Point selections are a special case of range selections. As a join attribute subject to a
point selection reduces the estimate computation to multiplying estimates for a single
selection per table, treating them differently simplifies the required computations: Point
selections allow us to handle the joins for an entire equivalence class by local predicates.
Furthermore, every table with all join attributes being subject to point selections can
even be excluded entirely from the sum over the cross product of all samples.

134

List of Figures

1.1 The trade-offs inherent to exact and approximate data analysis. Approxi-
mate analysis introduces the opportunity to trade off accuracy for higher
performance and fewer resources spent. 2

2.1 Kernel density estimator (line) for a sample (markers on the x-axis. The
estimate is the sum of the individual contributions of kernels centered on
each sample point (dashed). 12

2.2 Popular kernel choices. 1 denotes the indicator function. 14
2.3 Kernel density estimates for a sample (markers on the x-axis) drawn

from a standard normal distribution. We show KDE estimators with a
well-fitting (h = 0.042, Scotts rule), underfitting (h = 2), and overfitting
bandwidth (h = 0.05). 15

2.4 Three popular sketches referenced throughout this thesis. 19
2.5 High-level architecture of CPUs and GPUs visualizing the provisioning of

transistors to compute resources (cores), control flow handling (control),
and cache levels. Figure adapted from [114]. 24

2.6 Data transfer bandwidths for server system with an AMD EPYC 7742
CPU and an Nvidia A100 GPU accelerator. 26

2.7 CUDA programming model. A kernel is executed on a grid consisting of
multiple blocks that, in turn, consist of multiple threads. 26

2.8 Data parallel primitives. Figure adapted from [69]. 28
2.9 A filter implemented with data parallel primitives. 29
2.10 A two-input look-up table for an XOR operation 31
2.11 An elementary logic unit consisting of two LUTs, D-flip-flops, and carry

Logic. Figure adapted from [151]. 33
2.12 A two-dimensional grid of logical islands (LIs) with switching matrix.

Black dots visualize optional connections controlled by SRAM cells. The
switching matrix routes LI inputs and outputs. Figure adapted from [151]. 33

3.1 Sample pruning computes the invariant contributions and removes sample
points with a negligible contribution. 46

135

List of Figures

3.2 Cross pruning applies a band join instead of a full cross product and, thus,
skips all combinations from the cross product resulting in a negligible
cross contribution. 48

3.3 Estimation quality, SN dataset. The y-axis shows the multiplicative
estimation error. 53

3.4 Estimation quality, DMV dataset. The y-axis shows the multiplicative
estimation error. 55

3.5 Estimation quality, IMDb dataset. The y-axis shows the multiplicative
estimation error. 56

3.6 Estimation quality on DMV Q1 (Uniform) with growing sample sizes. . 58
3.7 Estimation quality on DMV Q3 (Uniform) with growing sample sizes. . 59
3.8 Estimation time on IMDb Q1 (Uniform) with growing sample sizes. . . . 61
3.9 Estimation time on IMDb Q3 (Uniform) with growing sample sizes. . . . 62
3.10 Estimation time for a CPU and GPU implementation on IMDb Q1 (Uni-

form) with growing sample sizes. 63
3.11 Estimation time for a CPU and GPU implementation on IMDb Q3 (Uni-

form) with growing sample sizes. 63

4.1 Scotch system architecture . 69
4.2 Select-Update model . 70
4.3 Sketching unit architecture . 75
4.4 RTL generation process . 75
4.5 Dependency graph and function unit RTL generated for the AGMS update

function (Listing 4.2) . 77
4.6 Pipelined memory architecture . 78
4.7 Compute unit architecture . 79
4.8 Data forwarding unit architecture . 81
4.9 State transfer controller architecture . 82
4.10 Auto-tune optimization space. BRAM and ELU consumption increase

linearly with the optimization parameter. With an increasing optimization
parameter, compilations are first successful, then fail due to timing, and
finally fail due to a lack of resources. 86

4.11 ELU consumption for various sketching units 89
4.12 Max. clock frequency for various sketching units 90
4.13 Comparison of merged updates (M) and replication (R) for data parallel

accelerators . 90

136

List of Figures

4.14 Summary sizes for FPGA accelerators on varying target devices with
varying operating frequencies . 91

4.15 Throughput for FPGA accelerators compared to Xeon and GeForce baselines 93

5.1 Optimistic data parallel sketching unit . 99
5.2 Optimistic compute unit architecture . 99
5.3 Dispatcher architecture . 101
5.4 Simulated stall rates in a banked architecture 102
5.5 Dispatcher architecture. There is one horizontal merger per input and one

vertical merger per bank. 104
5.6 Map-Reduce merging for a CM sketch . 105
5.7 Vertical merging with d = 4 input values 106
5.8 Horizontal merging with look-ahead h = 4 107
5.9 Sketching coprocessor for grouped aggregates implemented using Xilinx

Vitis. 111
5.10 Stall rates for optimistic architectures with increasing merging effort. For

Oversubscribed, vertical and horizontal merging with h = 2 is sufficient to
prevent stalls entirely. For Regular, we need h = 128 for stall rates below
1% (dotted line). 115

5.11 Stall rate distribution for architectures that favor vertical (v) or horizontal
merging (depth h). Favoring vertical merging is more effective. 116

5.12 Resource utilization for a pessimistic architecture (P) consuming 80%
URAM compared to regular (O-R) and oversubscribed (O-O) architectures
with the same sketch size. Optimistic architectures reduce URAM utilization.118

5.13 Max. operating frequency for a pessimistic architecture with 80% URAM
utilization compared to regular and oversubscribed architecture with the
same sketch size. 119

5.14 Resource utilization for regular and oversubscribed architecture with
d = 16 utilizing 20% of available URAM for increasing merging effort. . . 120

5.15 Throughput of regular, oversubscribed, and pessimistic architecture on
a U250 accelerator compared to a GPU (A100) and CPU (EPYC). FPGA
accelerators provide robust throughput and outperform GPU and CPU
baselines in all experiments. 123

137

List of Figures

5.16 Estimation error for approximate group-by queries with summary sizes
supported by oversubscribed (O-O), regular (O-R), and pessimistic (P) ar-
chitectures. The larger summary sizes provided by optimistic architectures
result in up to an order of magnitude improved accuracy. 125

A.1 Approximating the cross contribution for the Gaussian kernel by the
multiply-then-integrate approach . 133

138

List of Tables

2.1 Look-up tables for an XOR gate and a half-adder 31

4.1 Sketching algorithms generalized by the Select-Update model and imple-
mentable in ScotchDSL . 72

4.2 Sketching algorithms implemented . 87
4.3 Power consumption in Watt for 100 Gbit/s accelerators (S10, 390.625 MHz,

d = 8) compared to baselines . 94
4.4 Scotch compared to [154] for CM (XUS, m = 5, d = 1) 95

5.1 Sketch ensemble for grouped aggregates 110
5.2 Accelerators implemented on U250 . 121

139

List of Listings

2.1 Vector addition in CUDA . 27
2.2 Synchronous 32-bit unsigned addition in VHDL 34
3.1 Combining base table KDE models . 45
4.1 Select function for CM with H3 . 74
4.2 Update function for AGMS with EH3 . 74

140

Bibliography

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
1999. The Aqua Approximate Query Answering System. SIGMOD Record 28, 2
(1999), 574–576.

[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei
Wei, and Ke Yi. 2012. Mergeable Summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 23–34.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data. In Proceedings of the 8th ACM European
Conference on Computer Systems. 29–42.

[4] Noga Alon, Phillip Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking
Join and Self-join Sizes in Limited Storage. In Proceedings of the Eighteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 10–20.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity of
Approximating the Frequency Moments. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing. 20–29.

[6] Amd. 2022. UltraScale Architecture and Product Data Sheet: Overview DS890 (v4.2). Re-
trieved December 7, 2022 from https://www.xilinx.com/content/dam/xilinx/
support/documents/data_sheets/ds890-ultrascale-overview.pdf

[7] M. Arlitt and T. Jin. 2000. A workload characterization study of the 1998 World
Cup Web site. IEEE Network 14, 3 (2000), 30–37.

[8] Gerassimos Barlas. 2022. Multicore and GPU programming (2 ed.). Morgan Kauf-
mann.

[9] Nathan Bell and Jared Hoberock. 2012. Chapter 26 - Thrust: A Productivity-
Oriented Library for CUDA. In GPU Computing Gems Jade Edition. Morgan
Kaufmann, 359–371.

141

https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf

Bibliography

[10] Bitmain. 2022. Bitmain. Retrieved December 7, 2022 from https://www.bitmain.
com/

[11] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Communications of the ACM 13, 7 (1970), 422–426.

[12] Mark Bohr. 2007. A 30 year retrospective on Dennard’s MOSFET scaling paper.
IEEE Solid-State Circuits Society Newsletter 12, 1 (2007), 11–13.

[13] Pradip Bose. 2011. Encyclopedia of Parallel Computing - Power Wall. Springer US,
1593–1608.

[14] Léon Bottou. 2004. Stochastic Learning. In Advanced Lectures on Machine Learning.
Springer Verlag, 146–168.

[15] Adrian W. Bowman. 1984. An Alternative Method of Cross-Validation for the
Smoothing of Densitfy Estimates. Biometrika 71, 2 (1984), 353–360.

[16] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust Query Processing
in Co-Processor-accelerated Databases. In Proceedings of the 2016 International
Conference on Management of Data. 1891–1906.

[17] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl, and
Volker Markl. 2018. Generating Custom Code for Efficient Query Execution on
Heterogeneous Processors. In The VLDB Journal, Vol. 27. 797–822.

[18] A. Z. Broder. 1997. On the Resemblance and Containment of Documents. In
Proceedings of the Compression and Complexity of SEQUENCES 1997. 21–29.

[19] Paul Bromiley. 2003. Products and Convolutions of Gaussian Probability Density
Functions. Tina-Vision Memo 3, 4 (2003), 1.

[20] P. Bruel, A. Goldman, S. R. Chalamalasetti, and D. Milojicic. 2017. Autotuning
high-level synthesis for FPGAs using OpenTuner and LegUp. In 2017 International
Conference on ReConFigurable Computing and FPGAs. 1–6.

[21] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-
mensional Workload-Aware Histogram. SIGMOD Record 30, 2 (2001), 211–222.

[22] Fabrizio Tappero Bryan Mealy. 2019. Free Range VHDL. Retrieved December 7,
2022 from https://github.com/fabriziotappero/Free-Range-VHDL-book

142

https://www.bitmain.com/
https://www.bitmain.com/
https://github.com/fabriziotappero/Free-Range-VHDL-book

Bibliography

[23] Caida. 2019. Anonymized Internet Traces 2019. Retrieved December 7, 2022 from
https://catalog.caida.org/details/dataset/passive_2019_pcap

[24] Ufuk Celebi. 2015. How Apache Flink Handles Backpressure. Retrieved De-
cember 7, 2022 from https://www.ververica.com/blog/how-flink-handles-
backpressure

[25] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. 2001.
Approximate Query Processing using Wavelets. The VLDB Journal 10, 2 (2001),
199–223.

[26] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query
Processing: No Silver Bullet. In Proceedings of the 2017 ACM International Conference
on Management of Data. 511–519.

[27] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1999. On Random
Sampling over Joins. In Proceedings of the 1999 ACM SIGMOD International Conference
on Management of Data. 263–274.

[28] D. Chen and D. Singh. 2012. Invited paper: Using OpenCL to Evaluate the Efficiency
of CPUs, GPUs and FPGAs for Information Filtering. In 22nd International Conference
on Field Programmable Logic and Applications. 5–12.

[29] Monica Chiosa, Thomas Preußer, and Gustavo Alonso. 2021. SKT: A One-Pass
Multi-Sketch Data Analytics Accelerator. Proceedings of the VLDB Endowment 14,
11 (2021), 2369–2382.

[30] J. M. Cho and K. Choi. 2014. An FPGA Implementation of High-Throughput Key-
Value Store using Bloom Filter. In Technical Papers of 2014 International Symposium
on VLSI Design, Automation and Test. 1–4.

[31] Stavros Christodoulakis. 1984. Implications of Certain Assumptions in Database
Performance Evauation. ACM Transactions on Database Systems 9, 2 (1984), 163–186.

[32] G. Chrysos, O. Papapetrou, D. Pnevmatikatos, A. Dollas, and M. Garofalakis. 2019.
Data Stream Statistics Over Sliding Windows: How to Summarize 150 Million
Updates Per Second on a Single Node. In 29th International Conference on Field
Programmable Logic and Applications. 278–285.

[33] Google Cloud. 2022. Cloud Tensor Processing Units (TPUs). Retrieved December 7,
2022 from https://cloud.google.com/tpu/docs/tpus

143

https://catalog.caida.org/details/dataset/passive_2019_pcap
https://www.ververica.com/blog/how-flink-handles-backpressure
https://www.ververica.com/blog/how-flink-handles-backpressure
https://cloud.google.com/tpu/docs/tpus

Bibliography

[34] Saar Cohen and Yossi Matias. 2003. Spectral Bloom Filters. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data. 241–252.

[35] Stuart Colville. 2020. Mozilla Add-ons Community Blog - Introducing a scalable add-ons
blocklist. Retrieved December 7, 2022 from https://blog.mozilla.org/addons/
2020/08/24/introducing-a-scalable-add-ons-blocklist/

[36] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vis-
sers, and Zhiru Zhang. 2022. FPGA HLS Today: Successes, Challenges, and
Opportunities. ACM Transactions on Reconfigurable Technology and Systems 15, 4
(2022).

[37] Graham Cormode and Minos Garofalakis. 2005. Sketching Streams through the Net:
Distributed Approximate Query Tracking. In Proceedings of the 31st International
Conference on Very Large Data Bases. 13–24.

[38] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2012.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations
and Trends in Databases 4, 1–3 (2012), 1–294.

[39] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. Journal of Algorithms 55, 1
(2005), 58–75.

[40] Oracle Corporation. 2022. Oracle’s SPARC T8 and SPARC M8 Server Architecture.
Technical Report. Oracle Corporation.

[41] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J.
Wong, P. Yiannacouras, and D. P. Singh. 2012. From OpenCL to High-Performance
Hardware on FPGAs. In 22nd International Conference on Field Programmable Logic
and Applications. 531–534.

[42] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. 1974. Design of Ion-Implanted MOSFET’s with
very Small Physical Dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974),
256–268.

[43] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2016. Sketch-
Based Multi-Query Processing over Data Streams. 241–261.

144

https://blog.mozilla.org/addons/2020/08/24/introducing-a-scalable-add-ons-blocklist/
https://blog.mozilla.org/addons/2020/08/24/introducing-a-scalable-add-ons-blocklist/

Bibliography

[44] Tarn Duong and Martin L. Hazelton. 2005. Cross-Validation Bandwidth Matrices
for Multivariate Kernel Density Estimation. Scandinavian Journal of Statistics 32, 3
(2005), 485–506.

[45] IBM Cloud Education. 2022. How 13th Gen Intel®Core™Processors Work? Retrieved
December 7, 2022 from https://www.intel.com/content/www/us/en/gaming/
resources/how-hybrid-design-works.html

[46] IBM Cloud Education. 2022. What Is Green Computing? Retrieved De-
cember 7, 2022 from https://blogs.nvidia.com/blog/2022/10/12/what-is-
green-computing/

[47] V. A. Epanechnikov. 1969. Non-Parametric Estimation of a Multivariate Probability
Density. Theory of Probability & Its Applications 14, 1 (1969), 153–158.

[48] C. Estan and J.F. Naughton. 2006. End-biased Samples for Join Cardinality
Estimation. In 22nd International Conference on Data Engineering (ICDE’06).

[49] Cristian Estan and George Varghese. 2003. New Directions in Traffic Measurement
and Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Transactions
on Computer Systems 21, 3 (2003), 270–313.

[50] Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan.
2003. An Approximate L1-Difference Algorithm for Massive Data Streams. SIAM
Journal on Computing 32, 1 (2003), 131–151.

[51] Tom Feist. 2012. Vivado Design Suite. Xilinx White Paper 5 (2012), 30.

[52] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: The Analysis of a Near-Optimal Cardinality Estimation Algorithm. In
Proceedings of the 2007 Conference on Analysis of Algorithms. 127–146.

[53] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic Counting Algorithms
for Data Base Applications. Journal of Computer and System Sciences, 31, 2 (1985),
182–209.

[54] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S.
Blair, and Adrian Friday. 2021. The Real Climate and Transformative Impact of
ICT: A Critique of Estimates, Trends, and Regulations. Patterns 2, 9 (2021).

145

https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://blogs.nvidia.com/blog/2022/10/12/what-is-green-computing/
https://blogs.nvidia.com/blog/2022/10/12/what-is-green-computing/

Bibliography

[55] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-based Quantile Sketches for Efficient High Cardinality Aggregation
Queries. Proceedings of the VLDB Endowment 11, 11 (2018), 1647–1660.

[56] Sumit Ganguly, Phillip Gibbons, Yossi Matias, and Avi Silberschatz. 1996. Bifocal
Sampling for Skew-Resistant Join Size Estimation. SIGMOD Record 25, 2 (1996),
271–281.

[57] Hector Garcia-Molina, Jeffrey D Ullman, and Jennifer Widom. 2008. Database
Systems (2 ed.). Pearson.

[58] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi (Eds.). 2018. Data Stream
Management. Springer.

[59] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation
Using Probabilistic Models. SIGMOD Record 30, 2 (2001), 461–472.

[60] Amit Goyal, Hal Daumé, and Graham Cormode. 2012. Sketch Algorithms for
Estimating Point Queries in NLP. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language
Learning. 1093–1103.

[61] Khronos OpenCL Working Group. 2022. The OpenCL Specification Version 3.0. Re-
trieved December 7, 2022 from https://registry.khronos.org/OpenCL/specs/
3.0-unified/pdf/OpenCL_API.pdf

[62] Dimitrios Gunopulos, George Kollios, J Tsotras, and Carlotta Domeniconi. 2005.
Selectivity Estimators for Multidimensional Range Queries over Real Atributes.
The VLDB Journal 14, 2 (2005), 137–154.

[63] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeniconi.
2000. Approximating Multi-Dimensional Aggregate Range Queries over Real
Attributes. SIGMOD Record 29, 2 (2000), 463–474.

[64] Sumit Gupta. 2015. What Is NVLink? And How Will It Make the World’s Fastest
Computers Possible? Nvidia. Retrieved December 7, 2022 from https://blogs.
nvidia.com/blog/2014/11/14/what-is-nvlink/

[65] Bala Gurumurthy, David Broneske, Tobias Drewes, Thilo Pionteck, and Gunter
Saake. 2018. Cooking DBMS Operations using Granular Primitives. Datenbank-
Spektrum 18, 3 (2018), 183–193.

146

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://blogs.nvidia.com/blog/2014/11/14/what-is-nvlink/
https://blogs.nvidia.com/blog/2014/11/14/what-is-nvlink/

Bibliography

[66] Peter Haas, Jeffrey Naughton, and Arun Swami. 1994. On the Relative Cost of
Sampling for Join Selectivity Estimation. In Proceedings of the Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 14–24.

[67] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. 2009. Relational Query Coprocessing on Graphics Processors.
ACM Transactions on Database Systems 34, 4 (2009).

[68] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational Joins on Graphics Processors. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data. 511–524.

[69] Max Heimel. 2018. Data Processing on Heterogeneous Hardware. Ph. D. Dissertation.
Technische Universität Berlin.

[70] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data. 1477–1492.

[71] Max Heimel and Volker Markl. 2012. A First Step Towards GPU-assisted Query
Optimization. In International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures. 33–44.

[72] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-Oblivious Parallelism for In-Memory Column-Stores. Proceedings
of the VLDB Endowment 6, 9 (2013), 709–720.

[73] Christoph Heinz. 2007. Density Estimation Over Data Streams. Ph. D. Dissertation.
Philipps-Universität Marburg.

[74] John L Hennessy and David A Patterson. 2011. Computer Architecture (5 ed.).
Morgan Kaufmann.

[75] Ihab Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004.
CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of
Data. 647–658.

[76] Intel. 2022. FPGA Optimization Guide for Intel® oneAPI Toolkits (Rev. 13). Re-
trieved December 7, 2022 from https://www.intel.com/content/dam/develop/
external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf

147

https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf

Bibliography

[77] Intel. 2022. Intel FPGA Acceleration Card Solutions. Retrieved December 7, 2022
from https://www.xilinx.com/products/boards-and-kits/alveo.html

[78] Intel. 2022. Intel® Agilex™ Logic Array Blocks and Adaptive Logic Modules User
Guide (2022.05.24). Retrieved December 7, 2022 from https://www.intel.com/
programmable/technical-pdfs/683577.pdf

[79] Intel. 2022. OneAPI Specification 1.2. Retrieved December 7, 2022 from https:
//spec.oneapi.io/versions/1.2-rev-1/

[80] Yannis Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of Errors
in the Size of Join Results. In Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data. 268–277.

[81] Zsolt Istvan, Kaan Kara, and David Sidler. 2020. FPGA-Accelerated Analytics. now.

[82] Zsolt Istvan, Louis Woods, and Gustavo Alonso. 2014. Histograms as a Side
Effect of Data Movement for Big Data. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. 1567–1578.

[83] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS:
Online Sketch-Based Query Optimization for In-Memory Databases. In Proceedings
of the 2021 International Conference on Management of Data. 804–816.

[84] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C.
Sevcik, and Torsten Suel. 1998. Optimal Histograms with Quality Guarantees. In
Proceedings of the 24rd International Conference on Very Large Data Bases. 275–286.

[85] Steven G. Johnson. 2014. The NLopt nonlinear-optimization package. Retrieved
December 7, 2022 from http://ab-initio.mit.edu/nlopt

[86] Vinod Kathail. 2020. Xilinx Vitis Unified Software Platform. In Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
173–174.

[87] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities Using Bandwidth-Optimized Kernel Density Models. Proceedings
of the VLDB Endowment 10, 13 (2017), 2085–2096.

[88] Martin Kiefer, Max Heimel, and Volker Markl. 2015. Demonstrating Transfer-
Efficient Sample Maintenance on Graphics Cards. In Proceedings of the 18th Interna-
tional Conference on Extending Database Technology. 513–516.

148

https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.intel.com/programmable/technical-pdfs/683577.pdf
https://www.intel.com/programmable/technical-pdfs/683577.pdf
https://spec.oneapi.io/versions/1.2-rev-1/
https://spec.oneapi.io/versions/1.2-rev-1/
http://ab-initio.mit.edu/nlopt

Bibliography

[89] Martin Kiefer, Ilias Poulakis, Sebastian Breß, and Volker Markl. 2020. Scotch:
Generating FPGA-Accelerators for Sketching at Line Rate. Proceedings of the VLDB
Endowment 14, 3 (2020), 281–293.

[90] Martin Kiefer, Ilias Poulakis, Eleni Tzirita Zacharatou, and Volker Markl. 2023.
Optimistic Data Parallelism for FPGA-Accelerated Sketching. Proceedings of the
VLDB Endowment 16, 5 (2023), 1113–1125.

[91] Colian Ian King. 2020. Powerstat. Retrieved December 7, 2022 from https:
//github.com/ColinIanKing/powerstat

[92] Amit Kulkarni, Monica Chiosa, Thomas B. Preußer, Kaan Kara, David Sidler, and
Gustavo Alonso. 2020. HyperLogLog Sketch Acceleration on FPGA. In 2020 30th
International Conference on Field-Programmable Logic and Applications (FPL). 47–56.

[93] M. Kurek, M. P. Deisenroth, W. Luk, and T. Todman. 2016. Knowledge Trans-
fer in Automatic Optimisation of Reconfigurable Designs. In IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing Machines. 84–87.

[94] Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. 2007. Cardi-
nality Estimation using Sample Views with Quality Assurance. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of Data. 175–186.

[95] Hongrae Lee, Raymond Ng, and Kyuseok Shim. 2011. Similarity Join Size
Estimation using Locality Sensitive Hashing. Proceedings of the VLDB Endowment 4,
6 (2011), 338–349.

[96] Steven Leibson. 2022. FPGAs vs ASICs: Choose Your Path Carefully. Retrieved
December 7, 2022 from https://www.eejournal.com/article/fpgas-vs-asics-
choose-your-path-carefully/

[97] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[98] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In 8th Biennial Conference on Innovative Data Systems Research.

149

https://github.com/ColinIanKing/powerstat
https://github.com/ColinIanKing/powerstat
https://www.eejournal.com/article/fpgas-vs-asics-choose-your-path-carefully/
https://www.eejournal.com/article/fpgas-vs-asics-choose-your-path-carefully/

Bibliography

[99] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian König. 2011.
Hashing Algorithms for Large-Scale Learning. In Proceedings of the 24th International
Conference on Neural Information Processing Systems. 2672–2680.

[100] Qing Liu. 2009. Encyclopedia of Database Systems - Approximate Query Processing.
Springer, 113–119.

[101] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? SIGMOD Blog.

[102] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1633–1649.

[103] Volker Markl, Peter Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Srivastava,
and Tam Tran. 2007. Consistent Selectivity Estimation via Maximum Entropy.
Proceedings of the VLDB Endowment 16, 1 (2007), 55–76.

[104] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pira-
hesh, and Miso Cilimdzic. 2004. Robust Query Processing Through Progressive
Optimization. In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. 659–670.

[105] Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch: A Fast and
Fully-Mergeable Quantile Sketch with Relative-Error Guarantees. Proceedings of
the VLDB Endowment 12, 12 (2019), 2195–2205.

[106] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based Histograms
for Selectivity Estimation. SIGMOD Record 27, 2 (1998), 448–459.

[107] Rick Merritt. 2022. What Is Green Computing? Nvidia. Retrieved De-
cember 7, 2022 from https://blogs.nvidia.com/blog/2022/10/12/what-is-
green-computing/

[108] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
Computation of Frequent and Top-k Elements in Data Streams. In Proceedings of
the 10th International Conference on Database Theory. 398–412.

[109] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Science of
Computer Programming 2, 2 (1982), 143–152.

150

https://blogs.nvidia.com/blog/2022/10/12/what-is-green-computing/
https://blogs.nvidia.com/blog/2022/10/12/what-is-green-computing/

Bibliography

[110] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proceedings of the
VLDB Endowment 2, 1 (2009), 982–993.

[111] Ethernity Networks. 2022. Ethernity Networks - FPGA SmartNICs for Network
Acceleration. Retrieved December 7, 2022 from https://ethernitynet.com/
cornerstones/fpga-smartnics-for-network-acceleration/

[112] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.

[113] Jorge Nocedal. 1980. Updating Quasi-Newton Matrices with Limited Storage.
Mathematics of Computation 35, 151 (1980), 773–782.

[114] Nvidia. 2022. CUDA C++ Programming Guide - Design Guide. Retrieved December
7, 2022 from https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.
pdf

[115] Nvidia. 2022. Nvidia A100 Tensor Core GPU - Data Sheet. Retrieved Decemember
7, 2022 from https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

PG-02829-001_v11.7.0.

[116] Frank Olken. 1993. Random Sampling from Databases. Ph. D. Dissertation. University
of California, Berkeley.

[117] F. Olken and D. Rotem. 1992. Maintenance of Materialized Views of Sampling
queries. In Eighth International Conference on Data Engineering. 632–641.

[118] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. 2012.
Sketch-Based Querying of Distributed Sliding-Window Data Streams. Proceedings
of the VLDB Endowment 5, 10 (2012), 992–1003.

[119] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and Mode.
The Annals of Mathematical Statistics 33, 3 (1962), 1065 – 1076.

[120] Evaggelia Pitoura. 2018. Encyclopedia of Database Systems - Selectivity Estimation.
Springer, 3371–3372.

[121] M. Powell. 1994. A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation. In Advances in Optimization and
Numerical Analysis. 51–67.

151

https://ethernitynet.com/cornerstones/fpga-smartnics-for-network-acceleration/
https://ethernitynet.com/cornerstones/fpga-smartnics-for-network-acceleration/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

Bibliography

[122] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees A. Vissers, Joseph Zambreno,
and Phillip H. Jones. 2019. Comparing Energy Efficiency of CPU, GPU and
FPGA Implementations for Vision Kernels. In 15th IEEE International Conference on
Embedded Software and Systems. 1–8.

[123] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. 1997. Efficient Hardware Hashing
Functions for High Performance Computers. IEEE Transactions on Computers 46, 12
(1997), 1378–1381.

[124] Naveen Reddy and Jayant Haritsa. 2005. Analyzing Plan Diagrams of Database
Query Optimizers. In Proceedings of the VLDB Endowment. 1228–1239.

[125] Reflexces. 2022. Reflexces - A world of opportunities. Retrieved December 7, 2022
from https://www.reflexces.com/

[126] Murray Rosenblatt. 1956. Remarks on Some Nonparametric Estimates of a Density
Function. The Annals of Mathematical Statistics 27, 3 (1956), 832 – 837.

[127] Florin Rusu. 2009. Sketches for Aggregate Estimations over Data Streams. Ph. D.
Dissertation. University of Florida.

[128] Florin Rusu and Alin Dobra. 2007. Pseudo-Random Number Generation for
Sketch-Based Estimations. ACM Transactions on Database Systems 32, 2 (2007).

[129] Florin Rusu and Alin Dobra. 2008. Sketches for Size of Join Estimation. ACM
Transactions on Database Systems 33, 3 (2008).

[130] A. Saavedra, C. Hernandez, and M. Figueroa. 2018. Heavy-Hitter Detection Using
a Hardware Sketch with the Countmin-CU Algorithm. In 21st Euromicro Conference
on Digital System Design. 38–45.

[131] Stephan R. Sain, Keith A. Baggerly, and David W. Scott. 1994. Cross-Validation of
Multivariate Densities. J. Amer. Statist. Assoc. 89, 427 (1994), 807–817.

[132] Arish Sateesan, Jo Vliegen, Simon Scherrer, Hsu-Chun Hsiao, Adrian Perrig, and
Nele Mentens. 2021. Speed Records in Network Flow Measurement on FPGA.
In 31st International Conference on Field-Programmable Logic and Applications (FPL).
219–224.

[133] Robert Schweller, Yan Chen, Elliot Parsons, Ashish Gupta, Gokhan Memik, and Yin
Zhang. 2004. Reverse Hashing for Sketch-Based Change Detection on High-Speed
Networks. In Proceedings of ACM/USENIX Internet Measurement Conference’04.

152

https://www.reflexces.com/

Bibliography

[134] David Scott. 2015. Multivariate Density Estimation - Theory, Practice, and Visualization
(2nd ed.). John Wiley & Sons.

[135] P Selinger, Morton Astrahan, Donald Chamberlin, Raymond Lorie, and Thomas
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management of
Data. 23–34.

[136] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. 2010. FPMR:
MapReduce Framework on FPGA. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. 93–102.

[137] S. J. Sheather and M. C. Jones. 1991. A Reliable Data-Based Bandwidth Selection
Method for Kernel Density Estimation. Journal of the Royal Statistical Society. Series
B (Methodological) 53, 3 (1991), 683–690.

[138] A. Skodras, C. Christopoulos, and T. Ebrahimi. 2001. The JPEG 2000 Still Image
Compression standard. IEEE Signal Processing Magazine 18, 5 (2001), 36–58.

[139] Javier Soto, Thomas Krohmer, Cecilia Hernandez, and Miguel Figueroa. 2019.
Hardware Acceleration of k-Mer Clustering using Locality-Sensitive Hashing. In
22nd Euromicro Conference on Digital System Design. 659–662.

[140] Javier E. Soto, Paulo Ubisse, Yaime Fernández, Cecilia Hernández, and Miguel
Figueroa. 2021. A High-Throughput Hardware Accelerator for Network Entropy
Estimation Using Sketches. IEEE Access 9 (2021), 85823–85838.

[141] Javier E. Soto, Paulo Ubisse, Cecilia Hernández, and Miguel Figueroa. 2020. A
Hardware Accelerator for Entropy Estimation using the Top-k Most Frequent
Elements. In 23rd Euromicro Conference on Digital System Design (DSD). 141–148.

[142] Statista. 2022. Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025. Retrieved Decem-
ber 7, 2022 from https://www.statista.com/statistics/871513/worldwide-
data-created/

[143] Michael Stillger, Guy Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO -
DB2’s Learning Optimizer. In Proceedings of the VLDB Endowment. 19–28.

[144] Herb Sutter. 2005. The Free Lunch is Over: A Fundamental Turn Toward Concur-
rency in Software. Dr. Dobb’s Journal 30, 3 (2005), 202–210.

153

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[145] Krister Svanberg. 1987. The Method of Moving Asymptotes — A New Method for
Structural Optimization. International Journal for Numerical Methods in Engineering
24, 2 (1987), 359–373.

[146] Arun Swami and K Schiefer. 1994. On the Estimation of Join Result Sizes. In
Advances in Database Technology — EDBT ’94. 287–300.

[147] Jakub Szuppe. 2016. Boost.Compute: A Parallel Computing Library for C++ Based
on OpenCL. In Proceedings of the 4th International Workshop on OpenCL.

[148] NYC Taxi and Limousine Commission. 2009-2016. TLC Trip Record Data. Re-
trieved December 7, 2022 from https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page

[149] Charles C. Taylor. 1989. Bootstrap Choice of the Smoothing Parameter in Kernel
Density Estimation. Biometrika 76, 4 (1989), 705–712.

[150] J. Teubner, R. Mueller, and G. Alonso. 2010. FPGA Acceleration for the Frequent
Item Problem. In IEEE 26th International Conference on Data Engineering. 669–680.

[151] Jens Teubner and Louis Woods. 2013. Data Processing on FPGAs. Synthesis Lectures
on Data Management 5, 2 (2013), 1–118.

[152] Mikkel Thorup and Yin Zhang. 2004. Tabulation Based 4-Universal Hashing with
Applications to Second Moment Estimation. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. 615–624.

[153] Da Tong and Viktor K. Prasanna. 2015. High-Throughput Sketch-Based Online
Heavy Change Detection on FPGA. In International Conference on ReConFigurable
Computing and FPGAs. 1–8.

[154] D. Tong and V. K. Prasanna. 2018. Sketch Acceleration on FPGA and its Applications
in Network Anomaly Detection. IEEE Transactions on Parallel and Distributed Systems
29, 4 (2018), 929–942.

[155] Kostas Tzoumas, Amol Deshpande, and Christian Jensen. 2011. Lightweight
Graphical Models for Selectivity Estimation Without Independence Assumptions.
Proceedings of the VLDB Endowment 4, 11 (2011), 852–863.

[156] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently
Adapting Graphical Models for Selectivity Estimation. The VLDB Journal 22, 1
(2013), 3–27.

154

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Bibliography

[157] David Vengerov, Andre Menck, Mohamed Zait, and Sunil Chakkappen. 2015. Join
Size Estimation Subject to Filter Conditions. Proceedings of the VLDB Endowment 8,
12 (2015), 1530–1541.

[158] Jeffrey Vitter. 1985. Random Sampling with a Reservoir. ACM Transactions on
Mathematical Software 11, 1 (1985), 37–57.

[159] Vasily Volkov. 2016. Understanding Latency Hiding on GPUs. University of California,
Berkeley.

[160] Matt P Wand and M Chris Jones. 1994. Multivariate Plug-In Bandwidth Selection.
Computational Statistics 9, 2 (1994), 97–116.

[161] Zeke Wang, Bingsheng He, and Wei Zhang. 2015. A Study of Data Partitioning on
OpenCL-Based FPGAs. In 25th International Conference on Field Programmable Logic
and Applications. 1–8.

[162] Zeke Wang, Johns Paul, Hui Yan Cheah, Bingsheng He, and Wei Zhang. 2016.
Relational Query Processing on OpenCL-Based FPGAs. In 26th International
Conference on Field Programmable Logic and Applications. 1–10.

[163] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. 2016. Melia: A
MapReduce Framework on OpenCL-Based FPGAs. IEEE Transactions on Parallel
and Distributed Systems 27, 12 (2016), 3547–3560.

[164] Loring Wirbel. 2014. Xilinx SDAccel: A Unified Development Environment for
Tomorrow’s Data Center. The Linley Group Inc (2014).

[165] Xilinx. 2022. Adaptable Accelerator Cards for Data Center Workloads. Retrieved
December 7, 2022 from https://www.xilinx.com/products/boards-and-kits/
alveo.html

[166] Xilinx. 2022. High Performance Computing. Retrieved December
7, 2022 from https://www.xilinx.com/applications/data-center/high-

performance-computing.html

[167] Xilinx. 2022. Vivado Design Suite User Guide - Design Flows Overview (Version 2022.2).
Retrieved December 7, 2022 from https://docs.xilinx.com/r/en-US/ug892-
vivado-design-flows-overview/Revision-History

155

https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/applications/data-center/high-performance-computing.html
https://www.xilinx.com/applications/data-center/high-performance-computing.html
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview/Revision-History
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview/Revision-History

Bibliography

[168] Jackson H.C. Yeung, C.C. Tsang, K.H. Tsoi, Bill S.H. Kwan, Chris C.C. Cheung,
Anthony P.C. Chan, and Philip H.W. Leong. 2008. Map-Reduce as a Programming
Model for Custom Computing Machines. In 2008 16th International Symposium on
Field-Programmable Custom Computing Machines. 149–159.

[169] Jose Fernando Zazo, Sergio Lopez-Buedo, Mario Ruiz, and Gustavo Sutter. 2017.
A Single-FPGA Architecture for Detecting Heavy Hitters in 100 Gbit/s Ethernet
Links. In 2017 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 1–6.

[170] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016. LSH
Ensemble: Internet-scale Domain Search. Proceedings of the VLDB Endowment 9, 12
(2016), 1185–1196.

156

	Title Page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Use Cases
	1.3 Research Challenges
	1.4 Contributions and Impact
	1.5 Thesis Outline

	2 Background
	2.1 Approximate Data Analysis with Data Summaries
	2.1.1 Kernel Density Estimation
	2.1.2 Sketches

	2.2 Parallel Processors
	2.2.1 Graphics Processing Unit (GPU)
	2.2.2 Field-Programmable Gate Arrays

	3 GPU-Accelerated KDE for Join Selectivity Estimation
	3.1 Introduction
	3.2 The Join Estimation Problem
	3.2.1 Classic Join Estimation
	3.2.2 Sampling-based Join Estimation
	3.2.3 The AGMS Sketch

	3.3 Bandwidth-Optimized KDE
	3.4 KDE-based Join Estimation
	3.4.1 Estimating from a Join Sample
	3.4.2 Combining Base Table Models
	3.4.3 Extending to Multiple Joins

	3.5 Efficiently Joining KDE Models
	3.5.1 Extending to Multiple Joins

	3.6 Bandwidth Optimization
	3.7 Evaluation
	3.7.1 Experimental Setup
	3.7.2 Estimation Quality
	3.7.3 Quality Impact of Model Size
	3.7.4 Performance Evaluation

	3.8 Conclusion

	4 Scotch: A Holistic Approach to FPGA-Accelerated Sketching
	4.1 Introduction
	4.2 System Architecture
	4.2.1 Design Requirements
	4.2.2 Accelerator Design
	4.2.3 Scotch

	4.3 Sketch Specification
	4.3.1 Select-Update Model
	4.3.2 ScotchDSL

	4.4 RTL Generator
	4.4.1 Overview
	4.4.2 ScotchDSL Function Units
	4.4.3 State Memory
	4.4.4 Compute Unit
	4.4.5 State Transfer Controller

	4.5 Data Parallelism
	4.5.1 Replication
	4.5.2 Merged Updates for Column Sketches

	4.6 Discussion
	4.7 Automated Tuning
	4.8 Evaluation
	4.8.1 Experimental Setup
	4.8.2 RTL Generator
	4.8.3 Automated Tuning
	4.8.4 Comparison to Hand-Written RTL

	4.9 Related Work
	4.10 Conclusion

	5 Optimistic Data Parallelism for FPGA-Accelerated Sketching
	5.1 Introduction
	5.2 Banked Sketching Architecture
	5.2.1 Compute Unit Architecture
	5.2.2 Stall Rate

	5.3 Merging in the Dispatcher
	5.3.1 Map-Reduce Updates
	5.3.2 Vertical Merging
	5.3.3 Horizontal Merging
	5.3.4 Discussion

	5.4 Dispatcher Resource Utilization
	5.5 Limitations
	5.6 Application: Approximate Group-By on a Xilinx U250 Accelerator
	5.6.1 Sketch Ensemble
	5.6.2 Accelerator Architecture

	5.7 Evaluation
	5.7.1 Impact of Merging on Stall Rates
	5.7.2 Resource Consumption
	5.7.3 Application

	5.8 Related Work
	5.9 Conclusion

	6 Conclusion
	6.1 Outlook
	6.1.1 Future Work

	A Appendix: Derivations for KDE-based Join Selectivity Estimations
	A.1 Gaussian Cross Contribution
	A.1.1 Cross Contribution
	A.1.2 Generalized Cross Contribution

	A.2 Selections On Join Attributes

	List of Figures
	List of Tables
	List of Listings
	Bibliography

